Как посчитать потери давления воды на горизонтальном участке водопровода? Как посчитать горизонталь?

Калькулятор расчета потерь напора в водопроводе

Неправильным будет полагать, что если, например, насосная станция или установленный гидроаккумулятор подает в домашнюю разводку труб воду под определенным давлением, то это давление будет и на конечных точках потребления. На самом деле приходится закладывать еще и определённый эксплуатационный запас создаваемого напора — на неизбежные его потери.

Калькулятор расчета потерь напора в водопроводе

Природа этих потерь различна. Только на преодоление силы гравитации (если, скажем насосная станция или коллектор разместились в подвале, а точки потребления находятся на этажах), хочешь не хочешь, приходится «отдавать» по 0.1 атмосферы (бар) на каждый метр высоты подъема. Немало «крадут» и горизонтальные участки – в силу гидравлического сопротивления в трубах. И чем меньше диаметр и длиннее участок – тем эти потери существеннее. Добавьте сюда еще и повороты, тройники, краны и вентили, фильтры, переходы на другой диаметр и т.п. – каждая такая точка даёт дополнительное локальное сопротивление, уменьшающее общий напор воды.

И может получиться так, что из подаваемых, например, 2.5 атмосфер к дальней точке водозабора доходит только каких-то 0.2 атмосферы, и этого явно недостаточно для нормальной работы устройства. Чтобы избежать подобных казусов, необходимо заранее, еще на стадии проектирования своей водопроводной системы, «моделировать ситуацию», то есть просчитывать влияние гидравлического сопротивления. В этом может помочь предлагаемый калькулятор расчета потерь напора в водопроводе.

Несколько необходимых пояснений будут даны ниже.

Калькулятор расчета потерь напора в водопроводе

Пояснения по проведению вычислений

На страницах нашего портала есть информация, как просчитывается номинальный диаметр трубы для водопровода, исходя из необходимого расхода воды и оптимальной скорости потока в трубах.

Как правильно определиться с диаметром водопроводной трубы?

Главный критерий – труба должна обеспечивать требуемый расход воды в конечных точках потребления. Отсюда строится и весь дальнейший алгоритм, реализованный в калькуляторе расчета минимально необходимого диаметра водопроводной трубы – к соответствующей странице портала ведет ссылка.

Но на этом останавливаться не надо. Каждая из планируемых «веток» водопровода должна быть проанализирована и с точки зрения потерь напора.

Что указываем в полях калькулятора?

  • В первую очередь – какое давление выдается на начальной точке рассчитываемого участка.

— Это может быть нижний предел настройки насосной станции или гидроаккумулятора, то есть то давление, при котором происходит включение насоса.

— Это может быть напор в центральном коллекторе в точке, где производится врезка ответвления в систему.

— Это может быть напор на коллекторе, вынесенном на этаж, к которому дальше подсоединяются все приборы на этом этаже.

Главный редактор проекта Stroyday.ru. Инженер.

По большому счету, это вообще может быть любая произвольная точка системы, давление воды в которой заведомо известно или рассчитано. Например, от какой-то трубы отводится небольшая «ветка» для отдельно стоящего сантехнического прибора.

То есть всю систему можно разбить по своеобразной «иерархии». Например насос, далее – стояки, коллекторы на этажах, за ними – магистральные трубы на этажах с точками врезки и т.п. тТо есть для каждой из точек можно просчитывать потери напора (этим же калькулятором), и от нее потом «плясать» дальше.

  • Второй пункт – разница высот между начальной и конечной точками рассчитываемого участка. Указание идет в метрах, программа пересчитает в атмосферы.
  • Далее – рассматриваются участки труб на пути от начальной до конечной точки. Трубы с диаметром более 1 дюйма в расчет можно не принимать – гидравлическое сопротивление в них настольно невелико, что им можно пренебречь. Правда, такие трубы во внутренней водопроводной разводке практически и не встречаются.

— При указании диаметра, который имеется на участке, откроются дополнительные поля ввода данных.

— Для каждого из трех диаметров (½», ¾» и 1″) потребуется указать еще и тип труб. Точнее, не используются ли стальные (в том числе оцинкованные) трубы ВГП, повышенная шероховатость стенок которых дает куда более высокие показатели гидравлического сопротивления, если сравнивать с пластиковыми металлопластиковыми, медными трубами.

Читайте также:
Как отстирать чай с белых вещей?

— Длина для каждого диаметра складывается из длин всех горизонтальных и вертикальных отрезков на рассчитываемом участке.

Если предлагаемого в калькуляторе диаметра на участке нет, то оставляется как есть, и он автоматически будет исключен из расчета.

  • Далее – указываются все имеющиеся на рассчитываемом участке точки где возможны локальные потери напора. Точнее, точки для удобства уже перечислены – и нужно лишь просчитать на чертеже или плане и указать их количество. Если казанного элемента нет, можно или поставить ноль, или даже просто оставить строку незаполненной по умолчанию – она автоматически исключится из расчёта.

Кстати, если используются гибкие трубы (например, металлопластиковые) и повороты выполнены без отводов, только изгибом, это все равно принимается в расчет. Просто указывается плавные поворот, с радиусом, превышающей два диаметра трубы.

  • Остается только нажать копку «РАССЧИТАТЬ…» и получить прогнозируемый напор на дальнем конце рассчитываемого участка. Ну и сравнить его с тем, что необходимо для корректной работы конечного прибора. Обычно давления в 0,5 атмосферы достаточно для большинства сантехнических устройств. Меньше – могут возникнуть проблемы. Кроме того, некоторые изделия требуют и более высоких показателей давления – это оговаривается в их технических характеристиках.

Если давление недостаточное – придется как-то это дело корректировать. Возможные способы – повышение давления в начальной точке, увеличение диаметров отдельных участков, укорочение длины участков, их спрямление, снижение «насыщенности» водопровода кранами, отводами и т.п. После каждой такой теоретической корректировки проводится контрольный расчет. И так — пока не будет найдено оптимальное со всех точек зрения решение.

Гидравлический расчёт внутренних водопроводов

Гидравлический расчёт внутренних водопроводов — это довольно большая тема. Поэтому рассмотрим лишь основные его принципы.

Водопровод — это напорная система. Вода может идти в любом направлении под влиянием разности напоров, от большего напора к меньшему напору. При движении воды в трубах происходят два вида потерь напоров:

1) линейные потери напора (на прямых участках труб);

2) местные потери напора (на поворотах, тройниках и т.д.).

Общие (суммарные) потери напора складываются из суммы линейных и местных потерь напора.

Потери напора рассчитывают по специальным гидравлическим формулам. В общем случае потеря напора может быть рассчитана по формуле Вейсбаха [22]

где z — коэффициент гидравлического сопротивления; V — средняя скорость потока в трубе; g — ускорение свободного падения.

В случае прямолинейного участка трубопровода коэффициент гидравлического сопротивления

где l — коэффициент гидравлического трения; l — длина участка трубы; d — внутренний диаметр трубы.

Водопроводы обычно работают в условиях турбулентного режима течения. Поэтому коэффициент гидравлического трения может быть определён по приближённой формуле А.Д. Альтшуля

где Re — число Рейнольдса; D — абсолютная шероховатость стенок трубопровода. Например, для старых стальных труб D » 1,5 мм.

Число Рейнольдса для напорных трубопроводов

где nB — кинематическая вязкость воды, м 2 /с.

Для облегчения гидравлических расчётов применяют таблицы или графики. В нашей стране используют таблицы Ф.А. Шевелёва [25], которые приведены в большинстве учебников и гидравлических справочников.

Начинают гидравлический расчёт внутреннего водопровода с определения по СНиП 2.04.01-85 [15] нормативных расходов водоразборных приборов (кранов, смесителей). Например, расход холодной воды для крана равен 0,2 л/с.

Затем выбирают расчетную линию сети, от ввода водопровода до наиболее удалённого и высокорасположенного прибора (рассматриваем тупиковые системы В1, без циркуляции).

Эту линию разбивают на участки в местах ответвлений трубопроводов, то есть там, где меняется расход воды. Определяют длину каждого участка и количество приборов, которое обслуживается данным участком. При этом учитывают вероятность совместного действия приборов.

Рассмотрим пример. Конечный участок водопровода в квартире облуживает один прибор — смеситель для кухонной мойки. Тогда расчётный расход данного участка будет 0,2 л/с. Следующий против движения воды участок обслуживает два прибора: смеситель для мойки и смеситель для умывальника. Однако расчетный расход данного участка не является простой суммой 0,2 + 0,2 = 0,4 л/с. Дело в том, что одновременно эти приборы включают не часто. Поэтому, рассчитанный по специальным формулам СНиП 2.04.01-85 [15] расчётный расход получается около 0,22-0,23 л/с. Так учитывают вероятность совместного действия приборов.

Читайте также:
Как используют известняк?

После определения расчётного расхода на каждом участке расчетной линии сети подбирают внутренний диаметр труб так, чтобы средняя скорость в трубе была оптимальной:

Эту скорость называют экономически целесообразной.

Следующим шагом гидравлического расчёта является определение линейных потерь напора на каждом расчётном участке. Как уже было сказано, потери напора рассчитывают либо по формулам, либо с помощью таблиц.

Местные потери напора СНиП разрешает определять как долю линейных потерь напора.

Согласно п. 7.7 СНиП 2.04.01-85 [15], общая потеря напора на каждом участке трубопровода холодного водоснабжнения может быть определена по формуле

H = i l (1 + kl),

где i — гидравлический уклон (безразмерный), может быть найден, например, по таблицам Ф.А. Шевелёва [25]; l — длина участка трубопровода; kl — коэффициент, учитывающий долю местных потерь напора. Например, для хозяйственно-питьевого водопровода В1 СНиП [15] рекомендует принимать kl = 0,3.

Таким образом, рассчитав на каждом расчётном участке потерю напора, находят суммарные потери напора в сети внутреннего водопровода.

Приведенные расчёты удобнее всего выполнять в таблице. Кроме того, вместо ручного счёта лучше применять электронные таблицы типа SuperCalc, Lotus 1-2-3 или Microsoft Excel. На наш взгляд, наиболее удобными для автоматизации расчётов являются таблицы Excel версий 97/2000/XP/2003 и др. Таблицы MS Excel в настоящее время установлены практически на любом компьютере. Нами разработаны файлы-шаблоны таблиц гидравлического расчёта водопровода, которые можно получить через Интернет (см. с. 5).

В наружных сетях водопровода имеется гарантированный напор Hg. Его величина должна быть не менее 10 м и не более 60 метров, считая от верха водопроводной трубы [16]. Обычно в городах гарантированный напор находится в пределах 20-30 метров водяного столба. Для водоснабжения малоэтажных зданий часто хватает гарантированного напора, то есть дополнительной подкачки насосами не требуется. Для многоэтажных зданий, наоборот, надо проверять потребность в насосах, повышающих напор.

Насос для повышения напора в сети требуется, если напор насоса получается положительный по формуле

где Hтр — требуемый напор для здания, который можно найти так:

где Hgeom — геометрическая высота от наружного трубопровода до самого высокого прибора в здании; HB — потеря напора на водомерах; Hf — свободный напор перед прибором (2-3 метра водяного столба); SH — суммарные потери напора в сети внутреннего водопровода, взятые из предыдущего расчёта (в табличной форме).

Определение потерь напора на вводе

Ввод рассчитывается на подачу полного расчётного расхода в здании, т.е. с учётом горячего и холодного водоснабжения. По этому расходу подбирают диаметр трубы, а затем по таблице 4 находят гидравлический уклон и определяют потери напора hвв, м по формуле

где i – гидравлический уклон (потеря напора на единицу длины);

lвв – длина ввода, которая принимается от водомерного узла до точки присоединения к наружной сети (с учётом вертикальных участков).

Ввод рассчитывается на подачу полного расчётного расхода воды в здание qвв, л/с, который определяется по формуле

где Qo – часовой расход воды прибором, принимаемый для жилых зданий по прибору с максимальным часовым расходом, л/с (в соответствии с таблицей 2);

б – величина, принимаемая от общего количества приборов N и вероятности их использования P (в соответствии с таблицей 2).

Вероятность действия водоразборных устройств Робщ находим по формуле

где – максимальная норма расхода воды на одного человека в час, л;

Читайте также:
Как утеплять бревенчатый сруб

U – количество жителей в доме, чел;

– общий расход одним прибором, л/с;

N – общее число приборов в здании, шт.

Исходя из расчётного напора воды на участке, вычисляем диаметр трубы ввода d, мм по формуле

где qвв – расчётный расход ввода на участке, л/с;

V – предельно – допустимая скорость движения воды, м/с;

Скорость движения воды не должна превышать 1,5 м/с – в магистралях и стояках, в подводках к водоразборным устройствам и пожарным кранам – 2,5 м/с.

Округляем диаметр трубы до ближайшего стандартного значения.

Определяем уточнённую скорость Vу , м/с по формуле

где qвв – расчётный расход ввода на участке, л/с;

d – диаметр трубопровода, мм.

Вероятность действия водоразборных устройств Робщ находим по формуле

где – максимальная норма расхода воды на одного человека в час, л;

U – количество жителей в доме, чел;

– общий расход одним прибором, л/с;

N – общее число приборов в здании, шт;

Тогда NP = 128 • 0,0056 = 0,740.

По таблице определяем, что при NP = 0,740, б = 0,815.

Ввод рассчитывается на подачу полного расчётного расхода воды в здание qвв, л/с, который определяется по формуле

где Qo – часовой расход воды прибором, принимаемый для жилых зданий по прибору с максимальным часовым расходом, л/с (в соответствии с таблицей…);

б – величина, принимаемая от общего количества приборов N и вероятности их использования P;

qвв = 5 • 0,815 • 0,3 = 1,22 л/с.

Исходя из расчётного напора воды на участке, вычисляем диаметр трубы ввода d, мм по формуле

где qвв – расчётный расход ввода на участке, л/с;

V – предельно – допустимая скорость движения воды, м/с;

dвв = 1,13• 10 3 = 31,70 мм.

Принимаем стандартный диаметр dст = 32 мм.

Определяем уточнённую скорость Vу , м/с по формуле

где qвв – расчётный расход ввода на участке, л/с;

d – диаметр трубопровода, мм.

Определяем гидравлический уклон i

Определяем потери напора hвв, м по формуле

где i – гидравлический уклон (потеря напора на единицу длины);

lвв – длина ввода, которая принимается от водомерного узла до точки присоединения к наружной сети (с учётом вертикальных участков),

Как посчитать потери давления воды на горизонтальном участке водопровода? Как посчитать горизонталь?

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

Читайте также:
Композитная стеклопластиковая арматура – плюсы и минусы применения, производство, стоимость и особенности обработки

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ – Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться “эквивалентом шероховатости труб” и не как иначе, а то результат будет ошибочный. Эквивалент означает – средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано:
D=500мм=0.5м
Q=2 м 3 /с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω – площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

V=Q/ω=2/0,19625=10,19 м/с

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

λ=0,11(Δэ/D) 0,25 =0,11*(0,00025/0,5) 0,25 =0,01645

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Самостоятельный гидравлический расчет трубопровода

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.
Читайте также:
Как правильно ухаживать за изделиями из серебра в домашних условиях

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Читайте также:
Как сделать компостный ящик по финской технологии самому

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:

Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Читайте также:
Как избавится от синевы на древесине

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал – сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

Читайте также:
Кладочный цементный раствор

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Энциклопедия сантехника Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

Читайте также:
Какие блоки можно использовать для фундамента

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Вообще в целом, эти формулы показывают и доказывают, что при увеличении скорости или увеличении расхода, всегда увеличивается сопротивление движению потока жидкости, то есть увеличиваются потери напора. Причем увеличиваются не пропорционально, а квадратично. Это говорит о том, что единица увеличения расхода не соответствует затратам на потерю напора. То есть иметь большую скорость потока жидкости в трубе экономически не целесообразно. Поэтому бывает дешевле увеличить диаметр потока. В других статьях обязательно опишу, как посчитать, какой диаметр нам необходим.

Таблица: (Эквивалент шероховатости)

Кому интересно узнать (Эквивалент шероховатости ) для металлопластика, полипропилена и сшитого полиэтилена, то это соответствует и относится к пластмассам. То есть в таблице характеристика будет: Пластмассовые (полиэтилен, винипласт).

Так же хочу обратить внимание, на то, что со временем, на внутренних станках труб, образуется налет, что увеличивает шероховатость труб. Так что имейте ввиду что со временем потери напора только увеличиваются.

Таблица: (Кинематическая вязкость воды)

Как видно из графика, что при повышении температуры кинематическая вязкость уменьшается, а это значит, что и сопротивление движению воды уменьшается. Это значит, что при потоке горячей воды, «потери напора» будут меньше чем при потоке холодной воды. Кто живет в многоквартирных домах, если обратит внимание, то скорость и напор горячей воды всегда выше чем напор холодной воды. Есть исключения, но в большинстве случаев это так. Теперь вы понимаете, почему это так.

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м3/с, длина трубы L=900м, температура t=16°С.

Дано:
D=500мм=0.5м
Q=2 м3/с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10-6=0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

Ответ: 156,7 м. = 1,567 МПа.

Также хочу обратить внимание на то, что мы в задаче рассматривали трубу которая на всей своей длине имеет горизонтальное положение.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Мы рассмотрели потерю напора по длине трубопровода, также существуют местные сопротивления в виде заужения и поворотов, которые тоже влияют на потерю напора. О них будет описано в других моих статьях. И я обязательно приготовлю статью о том как подобрать насос по напору, чтобы удовлетворить требования расхода жидкости, в зависимости от потерь напора. Если что-то не понятно пишите в комментарии, обязательно отвечу!

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Скачать калькулятор расчетов гидравлического сопротивления.

Следующая статья: Местные гидравлические сопротивления

В разделе ремонт отопления, можете подробно ознакомиться с нашими услугами. Что мы делаем:

ООО ДИЗАЙН ПРЕСТИЖ

Надежный помощник по ремонту отопления.

Рассчитать стоимость отопления можно в разделе калькулятор отопления

САН САМЫЧ

  • Главная
  • О сайте.
  • О себе.

Гидравлический расчет для выбора насосной станции.

Здравствуйте уважаемые читатели «Сан Самыча«. Смешно иногда слушать продавцов-консультантов, когда они пытаются искренне помочь «правильно» подобрать насосную станцию. Глубина всасывания, напор, расход, мощность электродвигателя, рассчитывая характеристики на ходу, они умудряются все перепутать и запутаться самим. Для нас, уважаемый читатель, важно понять, что производитель указывает максимально возможные характеристики насоса. И они, конечно, связаны с параметрами Вашей системы водоснабжения, но они не совпадают, и не могут совпадать.

Читайте также:
Как оформить построенный дом на участке ИЖС

Да, насос способен поднять воду с глубины в восемь метров, но тогда смело скидывайте с напора те же восемь метров или 0,8 бар (атмосфер, кгс/см 2 ).

Да, насос выдаст 45 метров напора (4,5 бар, атм., кгс/см 2 ), но при условии, что Вы не будете с него требовать расхода вообще, а источник воды будет на уровне насоса.

Да, насос будет перекачивать 50 литров в минуту (3 куб. метра в час), но тогда грех добиваться от него хоть какого-то давления. Радуйтесь, что он выдает Вам эти пять ведер в минуту!

Впрочем, производитель и не скрывает этого. В любом паспорте насоса и насосной станции можно найти зависимости расхода от давления на напоре данного насоса, оформленные в виде графика или таблицы. А уже сам покупатель решает: устраивают его данные характеристики или нет.

Что нужно для расчета характеристик насоса?

Для расчета необходимых характеристик насоса нужны некоторые сведения о будущей системе водоснабжения. И мне кажется, Вы, как хозяин своего дома без труда озвучите или выясните их.

К этим сведениям относятся:

— расстояние по вертикали от зеркала воды источника водоснабжения до предполагаемого места установки самого дальнего смесителя в метрах. Причем желательно учесть сезонные колебания этого расстояния и, так называемые, динамические, когда зеркало воды опускается из-за того, что Вы берете воду. Чем точнее Вы определите это расстояние, тем точнее будет расчет, потому что вертикальная составляющая потери напора, обычно, самая большая.

— расстояние по горизонтали от источника воды до самого дальнего смесителя, рассчитанное исходя из предполагаемого маршрута прокладки трубы. Это расстояние можно измерить не так точно, точность плюс-минус один метр вполне сойдет.

— примерное предполагаемое место установки насоса или насосной станции в сборе. Соответственно, с вертикальным расстоянием, желательно, определиться поточнее.

— диаметры и материал предполагаемых к использованию в системе труб. Сейчас, обычно, используют пластиковые трубы, а у них у всех примерно равные показатели шероховатости, поэтому, по большому счету, значение имеют только диаметры предполагаемых труб и их длина. К слову, распространенная в интернете формула для расчета водоснабжения: 10 метров горизонтальной трубы равно 1 метру по вертикали, мягко сказать, не всегда верна. В дальнейшем я расскажу почему.

— Желательно, конечно, определиться с количеством уголков, тройников, кранов и других элементов системы, называемых «местными сопротивлениями». Но я понимаю, что это довольно сложно, по крайней мере, на данном этапе. Поэтому, по нашему обоюдному согласию, заменим это все, скажем, 10-процентным запасом по напору.

Ну, а при монтаже системы, не забывайте простое правило: Чем меньше соединений, тем меньше вероятность, что у Вас что-то потечет. К этому стоит добавить, что и потери напора тоже будут меньше.

Да. и самое главное, Вы должны определиться, сколько потребителей (смесители, душ, бачок унитаза, стиральная или посудомоечная машина, уличный кран для полива и прочее) будут у Вас работать одновременно без существенной потери напора. Потому что от этого очень многое зависит.

Ниже, я собрал в таблицу потери напора в горизонтальной пластиковой трубе длиной 10 метров в зависимости от диаметра трубы и количества потребителей, рассчитанные с помощью специальной программы. По-моему, получилось очень показательно.

Потеря напора в метрах водного столба на горизонтальном участке пластиковой трубы длиной 10 метров в зависимости от внутреннего диаметра трубы и количества потребителей.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: