Как рассчитать теплоотдачу стальной трубы и для чего это делается

Как рассчитать теплоотдачу стальной трубы и для чего это делается

С какой целью рассчитывают теплоотдачу стальных труб

Преимущественно, расчет теплоотдачи стальных труб производится в таких случаях:

  • если нужно определить мощность нагревательных приборов для системы отопления в доме;
  • если возникла необходимость оценки теплопотерь, происходящих во время транспортировки теплоносителя по трубопроводу.

Стоит отметить, что нагревательные контуры, сквозь которые может отдаваться тепло, устанавливают в таких приборах:

  • полотенцесушители и змеевики;
  • регистры;
  • системы теплого пола.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Системы теплых полов

Если речь идет о водяном теплом полу, в отличие от электрического аналога, в качестве нагревательного контура в нем используются металлические трубы, хотя, их стали применять в последнее время все реже.

Главная причина снижения спроса на водяной теплый пол заключается в постепенном изнашивании стальных труб, снижении просвета в них. Кроме того, имеет значение и способ монтажа – сварные швы выполнить сможет далеко не каждый, а резьбовое соединение грозит утечкой теплоносителя через некоторое время. Естественно, никому не понравится результат утечки воды из системы в полу со стяжкой – будет затоплен потолок нижнего этажа или подвала, а перекрытие постепенно придет в негодность.

По этим причинам на замену стальным трубам в теплых водяных полах сначала пришли металлопластиковые змеевики, фитинги на которые крепились за пределами стяжки, а в настоящее время предпочитают армированный полипропилен.

Такому материалу присуще незначительное тепловое расширение, а при грамотной укладке и эксплуатации они могут прослужить не один десяток лет. Как вариант, используют и другие полимерные материалы.

Обратите внимание, что зазоры для теплового расширения армированного полипропилена все же нужно оставлять, хоть оно и небольшое.

Как выполнить расчёт необходимого диаметра труб отопления

Начиная расчет диаметра трубы для отопления жилого помещения, следует учесть ещё один важный параметр. Это – тепловая нагрузка. В соответствии со стандартами, комфортные условия для проживания в помещении при высоте потолка в 2,5 м обеспечивают 0,1 кВт тепловой мощности, приходящихся на 1 м2 его площади. Следовательно, можно очень легко подсчитать, сколько же потребуется тепла для обогрева, например, комнаты в 20 м2:

В соответствии с таблицей подбирается диаметр труб, способных обеспечить комфортное тепло. В нашем примере, согласно представленной таблице, для того, чтобы в комнате всегда было тепло, вполне подойдут трубы внутренним диаметром в 1/2 дюйма.

Тепловая нагрузка и расход теплоносителя для труб отопления различного диаметра

Полотенцесушители

В домах старой постройки полотенцесушители из стальных труб встречаются очень часто, ведь в большинстве случаев они были заложены проектом, причем почти до конца прошлого века врезались в систему на резьбе.

Не так давно стали применять циркулярные врезки в элеваторных узлах, которые обеспечивают стабильную горячую температуру прибора.

Поскольку нагревательные контуры в полотенцесушителях постоянно подвергались перепадам температур – то нагревались, то остывали – резьбовым соединениям было сложно выдержать такой режим, поэтому они периодически начинали подтекать.

Несколько позднее, когда прогрев этих приспособлений стал стабильным благодаря врезке в стояки отопления, проблема протечек стала не настолько актуальной. В то же время размеры змеевика стали намного меньше, в результате чего снизилась площадь теплоотдачи стальной трубы. Однако такой полотенцесушитель оставался теплым не только во время использования горячей воды, а постоянно.

Методы повышения теплоотдачи

Круглая форма отнюдь не способствует увеличению теплоотдачи металлических труб. Еще более низкий коэффициент отношения объема и поверхности можно встретить только у сферы.

Следовательно, проблема как увеличить теплоотдачу трубы, несомненно, стояла у разработчиков первых простых отопительных приборов.

Чтобы увеличить коэффициент теплоотдачи стальной трубы раньше применялись такие методы:

  • Поверхность трубы покрывали матовой черной краской, чтобы усилить инфракрасное излучение нагревательного элемента. Это позволяло добиться значительного роста температуры в помещении. Стоит отметить, что современное хромирование на полотенцесушителях крайне неэффективно для усиления теплоотдачи – оно, скорее, для красоты.
  • Увеличение теплоотдачи трубы за счет наваривания на нее дополнительных ребер, что делало площадь нагревательного элемента, а значит и теплоотдачу, существенно больше. Наиболее передовым вариантом использования данного способа можно назвать конвектор, то есть участок загнутой трубы с приваренными поперечными ребрами. Хотя сама труба в данном случае отдает минимум тепла.

Любым из этих методов можно воспользоваться, если стоит вопрос, как увеличить теплоотдачу трубы отопления своими руками, ведь они совсем не сложные и вполне осуществимы в домашних условиях.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теплопотери сквозь трубы

В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.

А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.

Читайте также:
Интерьер. Традиционные формы искусства в Индии

Какие бывают

Отопительные регистры изготавливают из разного материала, имеют они разную форму. У каждой есть плюсы и минусы.

Из чего делают

Если говорить о материалах, то самый распространенный — сталь, а вернее стальные электросварные трубы. Сталь имеет не самую лучшую теплоотдачу, но это компенсируется невысокой ценой, легкостью в обработке, доступностью и большим выбором типоразмеров.

Совсем редко встречаются сделанные из нержавеющей трубы — для приличной мощности требуется большое количество труб, а сколько стоят изделия из нержавейки, вы имеете представление. Если и делали их, то, наверное, давно. Используют еще «оцинковку», но работать с ней сложнее — варить не получится.

  • требуется нейтральный и чистый теплоноситель, без твердых частиц
  • в системе нежелательно присутствие других металлов и сплавов, кроме совместимых — бронза, латунь, никель, хром, потому все фитинги и арматуру нужно будет искать из этих материалов;
  • обязательно тщательно выполненное заземление — без него при наличии воды начинается процессы электрохимической коррозии;
  • мягкость материала требует защиты — нужны кожухи и т.п.

Есть регистры из чугуна. Но они слишком громоздки. К тому же имеют очень большую массу, под них нужно делать не менее массивные стойки. Плюс ко всему чугун отличатся хрупкостью — один удар, и он может расколоться. Получается, что и этот тип регистров нуждается в защитных кожухах, а они снижают теплоотдачу и увеличивают стоимость. Причем устанавливать их — сложная и тяжелая работа. К плюсам можно отнести высокую надежность и химическую нейтральность: этому сплаву все равно, с каким теплоносителем работать.

В общем, медь и чугун — это непросто. Вот и получается, что оптимальный выбор — стальные регистры.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Способы увеличения теплоотдачи

Во всех отопительных и нагревательных системах нужно стремиться к тому, чтобы теплоотдача трубы была максимальной. Это будет означать, что энергию, затрачиваемую на нагрев носителя, мы используем наиболее эффективно. Для каждой конструкции, работающей в своих условиях, способ увеличить теплопередачу подбирается отдельно, с учетом всех нюансов. Но основой этих улучшений будут уже рассмотренные в теоретическом расчете исходные данные – площадь излучающей поверхности и разница температур.

Как рассчитать теплоотдачу стальной трубы и для чего это делается

Опубликовано 18 мая 2021 Рубрика: Теплотехника | 31 комментарий

Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее…

…программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

y=f (x1, x2, x3, …, xn), где:

  • y – значение функции (искомый расчетный параметр);
  • x1,x2,x3, …,xn – значения аргументов функции (исходные данные).

Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

С какой целью рассчитывают теплоотдачу стальных труб

Преимущественно, расчет теплоотдачи стальных труб производится в таких случаях:

  • если нужно определить мощность нагревательных приборов для системы отопления в доме;
  • если возникла необходимость оценки теплопотерь, происходящих во время транспортировки теплоносителя по трубопроводу.

Стоит отметить, что нагревательные контуры, сквозь которые может отдаваться тепло, устанавливают в таких приборах:

  • полотенцесушители и змеевики;
  • регистры;
  • системы теплого пола.

Системы теплых полов

Если речь идет о водяном теплом полу, в отличие от электрического аналога, в качестве нагревательного контура в нем используются металлические трубы, хотя, их стали применять в последнее время все реже.

Главная причина снижения спроса на водяной теплый пол заключается в постепенном изнашивании стальных труб, снижении просвета в них. Кроме того, имеет значение и способ монтажа – сварные швы выполнить сможет далеко не каждый, а резьбовое соединение грозит утечкой теплоносителя через некоторое время. Естественно, никому не понравится результат утечки воды из системы в полу со стяжкой – будет затоплен потолок нижнего этажа или подвала, а перекрытие постепенно придет в негодность.

По этим причинам на замену стальным трубам в теплых водяных полах сначала пришли металлопластиковые змеевики, фитинги на которые крепились за пределами стяжки, а в настоящее время предпочитают армированный полипропилен.

Такому материалу присуще незначительное тепловое расширение, а при грамотной укладке и эксплуатации они могут прослужить не один десяток лет. Как вариант, используют и другие полимерные материалы.

Обратите внимание, что зазоры для теплового расширения армированного полипропилена все же нужно оставлять, хоть оно и небольшое.

Как устанавливают

Вариантов установки два: навесить на стену или поставить на стойку. Выбор зависит от габаритов и массы полученной конструкции, а также от типа стен.

Достаточно часто делают комбинированную установку: варят стойки, которые затем крепят к стене. Таким способом можно установить даже очень массивные регистры. Также такой вариант установки обеспечивает высокий уровень безопасности.

Каждый такой отопительный прибор в верхней точке должен иметь воздухоотводчик. Он нужен для стравливания воздуха из системы.

Полотенцесушители

В домах старой постройки полотенцесушители из стальных труб встречаются очень часто, ведь в большинстве случаев они были заложены проектом, причем почти до конца прошлого века врезались в систему на резьбе.

Читайте также:
Как сделать кривые линии на потолке

Не так давно стали применять циркулярные врезки в элеваторных узлах, которые обеспечивают стабильную горячую температуру прибора.

Поскольку нагревательные контуры в полотенцесушителях постоянно подвергались перепадам температур – то нагревались, то остывали – резьбовым соединениям было сложно выдержать такой режим, поэтому они периодически начинали подтекать.

Несколько позднее, когда прогрев этих приспособлений стал стабильным благодаря врезке в стояки отопления, проблема протечек стала не настолько актуальной. В то же время размеры змеевика стали намного меньше, в результате чего снизилась площадь теплоотдачи стальной трубы. Однако такой полотенцесушитель оставался теплым не только во время использования горячей воды, а постоянно.

Правила эксплуатации отопительных регистров

Регистра в ванной комнате

Для увеличения срока службы необходимо проводить ряд мероприятий по поддержанию регистров отопления в рабочем состоянии. Рекомендуется составить график контрольных проверок, включающий в себя визуальный осмотр и анализ температурного режима работы регистра.

Кроме этого, следует периодически выполнить очистку внутренней поверхности конструкции от накипи и ржавчины. Для этого лучше всего применять гидродинамический метод, так как для химической очистки потребуется большое количество специальной жидкости. Это можно делать без демонтажа конструкции – достаточно при изготовлении установить патрубки для обеспечения доступа к внутренней полости регистра.

Каждый раз перед новым отопительным сезоном проверяется целостность конструкции, надежность сварных и резьбовых соединений. В случае надобности выполняется замена прокладок и навариваются ремонтные швы.

В видеоматериале показан пример изготовления регистра из стальной профильной трубы:

Методы повышения теплоотдачи

Круглая форма отнюдь не способствует увеличению теплоотдачи металлических труб. Еще более низкий коэффициент отношения объема и поверхности можно встретить только у сферы.

Следовательно, проблема как увеличить теплоотдачу трубы, несомненно, стояла у разработчиков первых простых отопительных приборов.

Чтобы увеличить коэффициент теплоотдачи стальной трубы раньше применялись такие методы:

  • Поверхность трубы покрывали матовой черной краской, чтобы усилить инфракрасное излучение нагревательного элемента. Это позволяло добиться значительного роста температуры в помещении. Стоит отметить, что современное хромирование на полотенцесушителях крайне неэффективно для усиления теплоотдачи – оно, скорее, для красоты.
  • Увеличение теплоотдачи трубы за счет наваривания на нее дополнительных ребер, что делало площадь нагревательного элемента, а значит и теплоотдачу, существенно больше. Наиболее передовым вариантом использования данного способа можно назвать конвектор, то есть участок загнутой трубы с приваренными поперечными ребрами. Хотя сама труба в данном случае отдает минимум тепла.

Любым из этих методов можно воспользоваться, если стоит вопрос, как увеличить теплоотдачу трубы отопления своими руками, ведь они совсем не сложные и вполне осуществимы в домашних условиях.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Теплопотери сквозь трубы

В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.

А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.

Виды отопительных регистров

Теплоотдающие приборы этого типа бывают нескольких видов в зависимости от их конструктивных особенностей, формы труб и материала изготовления.

Тепловые регистры различной конструкции

Конструкция регистра отопления может быть змеевиковой, секционной.

Состоят из нескольких параллельных труб, соединенных дугообразными патрубками, или одной трубы, изогнутой змейкой. В зависимости от особенностей помещения и необходимой температуры прибор выполняют с одним или несколькими изгибами.

При такой конструкции все элементы регистра участвуют в процессе теплообмена, обеспечивая высокую эффективность обогрева при экономии пространства. Змеевики сложны в изготовлении: требуется либо сварочный аппарат для сборки регистра из отдельных деталей, либо трубогиб для сгибания длинномерной трубы, что требует определенных навыков работы с этими инструментами.

Секционные регистры

Регистры, выполненные в виде секций значительно проще в изготовлении, так как представляют собой несколько одинаковых отрезков трубы, соединенных по краям соединительными патрубками. Секции соединяют последовательно или параллельно:

В первом случае соединительные патрубки устанавливают то с левого, то с правого края секций. Пропускная способность соединительных патрубков такая же, как у транспортировочных труб. С противоположного же края вместо соединения монтируется подпорка, удерживающая трубы в нужном положении, а торцы труб закрываются заглушками. Энергоноситель движется по теплоотдающему контуру так же, как в змеевиковом регистре – проходя секции поочередно.

Классификация по форме сечения

Змейка или секции отопительных приборов могут быть изготовлены из труб различной формы:

высокая пропускная способность,

низкое гидравлическое сопротивление,

простота внешней очистки;

высокое гидравлическое сопротивление

Виды регистров по материалу изготовления

Материал используемых для изготовления труб также влияет на стоимость, размеры, эффективность и эстетичность регистра:

Материал Плюсы Минусы
Сталь углеродистая низкая стоимость,
простота монтажа,
невысокая теплоотдача,
подверженность коррозии,

неэстетичный внешний вид

окрашивание не обязательно, но возможно

пластичность, позволяющая выполнить регистр любой формы,

устойчивость к коррозии,

подходит только для чистых и химически нейтральных теплоносителей,

неустойчивость к механическим повреждениям

устойчивость к механическим повреждениям,

средний ценовой диапазон,

медленно нагреваются и долго остывают

Регистры из труб различных форм и материалов можно изготовить самостоятельно или приобрести в готовом виде, тогда останется только установить и подключить прибор к тепловому контуру.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Исследование образцов

Давайте познакомимся с парой рыночных предложений от разных производителей, заявленными характеристиками труб и ценами на них.

Kofulso

Торговый знак южнокорейского бренда.

Параметр Значение
Рекомендованная рабочая температура 100С
Рекомендованное рабочее давление (при диаметре 20 мм) 12 кгс/см2
Стоимость погонного метра Отожженная труба — 364 рубля, неотожженная — 313 рублей (цены интернет-магазина Стэлмаркет на май 2021 года)

О Боже мой, но почему всего 12 атмосфер и 100 градусов? Ведь нам обещали необычайную прочность и стойкость к гидроударам!

Уважаемый читатель, не путайте рекомендованные режимы и запас прочности. На страничке того же Стэлмаркета можно найти протокол гидравлических испытаний труб Кофулсо, свидетельствующий, что они были испытаны давлением в 60 кгс/см2 без каких-либо негативных последствий.

С температурой — та же картина. И нержавейка, и силиконовые уплотнители фитингов, и латунь их корпусов прекрасно переживут нагрев до 150 и выше градусов. Производитель рекомендует их эксплуатацию в определенном режиме, но это вовсе не означает, что при отклонениях от рекомендованных значений ваша система отопления мгновенно разрушится.

Lavita

Трубы и фитинги Лавита.

Параметр Значение
Рекомендованная рабочая температура 110С
Допустимая кратковременная температура 150С
Рекомендованное рабочее давление при максимальной температуре 15 кгс/см2
Разрушающее давление 210 кгс/см2
Стоимость погонного метра (DN20, отожженная) 394 рубля

Наиболее полезной информацией здесь являются данные о разрушающем давлении. Поскольку толщина стенок и химический состав сталей у разных производителей не отличаются, любая гофрированная труба из нержавейки для отопления будет способна выдержать гидроудары и превышение номинального давления с огромным запасом по прочности.

Теплоотдача 1 м. стальной трубы

Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Рассчитываем отдачу для 1 м. изделия

Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.

Q = 0,047*10*60 = 28 Вт.

  • К = 0.047, коэффициент теплоотдачи;
  • F = 10 м 2 , площадь трубы;
  • dT = 60° С, температурный напор.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

Отопительные регистры виды, расчет и изготовление своими руками

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Как увеличить теплоотдачу?

Благодаря имеющемуся соотношению объема трубы к площади ее поверхности, достаточно часто возникает необходимость увеличить ее способность отдавать тепло. Это требуется для наиболее эффективного отопления помещений.

О том, как увеличить теплоотдачу трубы, известно уже давно, на практике применяли и применяют следующие способы.

Пример эффективного увеличения теплоотдачи – конвектор, применявшийся в системах отопления


еще в советские времена. Он представлял собой согнутую трубу (U-образная форма) с наваренными перпендикулярно ей пластинами. Данный метод называется оребрение, он применяется и в современных отопительных устройствах.

Неплохой результат дает и окраска излучающих тепло поверхностей матовой черной краской. Конечно это не слишком хороший вариант с точки зрения дизайнера, но он существенно повышает инфракрасное излучение прибора.

Обеспечить более высокую теплоотдачу системы отопления можно было путем увеличения площади поверхности нагревательных элементов.

Раньше это достигалось несколькими способами:

  • Увеличение длины труб. Простой пример – обычный полотенцесушитель, коэффициент теплоотдачи трубы, конечно, не меняется, более эффективный обогрев получали именно за счет увеличения длины.
  • Еще один способ повышения эффективности отопления — применение регистров. Они представляют собой несколько параллельных линий труб, отдача тепла и в этом случае достигалась за счет увеличения рабочей площади устройства. Конечно, сравнивать теплоотдачу регистра и современных отопительных приборов нельзя, но в недавнем прошлом подобная конструкция во многих случаях становилась единственно возможной.


Появление новых материалов дало возможность использовать другие способы повышения эффективности отопления. Самый популярный — теплый водяной пол, правда, в последнее время стальные трубы в этой сфере не применяются, появились более современные материалы, но принцип тот же.

Существенное увеличение длины греющих элементов позволяет получить эффективное отопление.

Сейчас для монтажа систем водяного теплого пола, в основном, применяют металлопластик и другие виды полимерных труб.

При использовании металлопластиковых труб не стоит забывать о том, что не следует замуровывать в стяжку фитинги, особенно компрессионные. Лучше всего, если вся линия будет проложена целой трубой.

В связи с тем, что теплоотдача трубы стальной все-таки ограничена, все чаще стали применяться другие материалы, например алюминий. Радиаторы из него обладают высоким коэффициентом теплоотдачи.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Методика расчета

Формула определения теплоотдачи достаточно проста, но стоит учитывать то, что она дает приблизительные результаты. Существует множество нюансов, оказывающих свое влияние. Поэтому, если вам необходимы точные данные, какая теплоотдача именно при ваших условиях, лучше обратиться к специалисту.

Q=K x F x ∆t,

где: Q – теплоотдача, Ккал/ч

K – коэффициент теплопроводности стальной трубы, Ккал/(кв м х ч х 0 С)

F – площадь нагреваемой поверхности труб, кв м

∆t – тепловой напор, 0 С

Коэффициент теплопроводности зависит не только от материала, из которого изготовлены трубы.

Большую роль играют и следующие данные:

  • Диаметр
  • Количество ниток (линий) обогревательного устройства
  • Тепловой напор изделия

Он, в свою очередь, определяется по целому ряду сложных формул, поэтому проще пользоваться специальными таблицами, в которых имеются средние данные.

Так для стальных труб он может варьироваться от 8 до 12,5.

Площадь поверхности определяется по простейшим формулам из школьного курса геометрии, так для трубы круглого сечения она равняется площади цилиндра:

F = П х d x l,

d – диаметр трубы

Тепловой напор определяется по следующей формуле:

где: tп – температура теплоносителя на входе, градусов

tо – температура теплоносителя на выходе, градусов

tв – температура в помещении, градусов

Если вас интересует теоретическая теплоотдача стальной трубы, то согласно СНиП применяются следующие значения теплового напора:

Следовательно, тепловой напор ∆t = 55 градусов.

Если вы будете выполнять расчет для трубы, которая имеет теплоизоляцию, то полученный результат необходимо будет умножить коэффициент полезного действия утеплителя.

Пример расчета

В качестве примера рассчитаем, сколько тепла отдает стальная труба с такими параметрами – диаметр 25 мм, длина 1 метр. Расчет делаем теоретический, следовательно, тепловой напор 55 градусов, труба не утеплена.

Определяем площадь поверхности:

F = 3,14 х 0,025 х 1 = 0,0785 кв м

Из таблицы выбираем значение коэффициента теплопроводности. Для регистра в одну нитку, с диаметром меньшим 40 мм, при тепловом напоре 55 градусов, имеем К = 11,5.

Q = 11,5 х 0,0785 х 55 = 49,65 Ккал/ч

Как видите, в теории все достаточно просто, но практика значительно отличается от теории. Поэтому самостоятельно выполнять подобные расчеты можно только в самых простых случаях.

Способы увеличения теплоотдачи

Начнем непосредственно статью с того, как увеличить теплоотдачу трубы в загородном доме ().

На данный момент существует несколько способов увеличения выдачи тепла от уже созданной и бывшей в эксплуатации, но не оправдавшей ваших надежд, системы отопления:

  • Монтаж конвекторов
    . Эта конструкция из трубы с нанизанными на нее металлическими пластинами выполненная своими руками, либо заводского изготовления.
  • Окраска магистрального трубопровода в черный или другой темный цвет
    . Такой способ при всей своей простоте довольно эффективен. К тому же колер вполне органично может вписаться в современный дизайн помещений, в отличие от недавнего прошлого, когда это считалось вынужденной мерой.

Примечание! Краска лишь дополнительный способ, который актуален в редких случаях, так как эффективность слишком мала, чтобы «любоваться» черными полосами.

  • Монтаж в отопительную систему регистров
    . Регистр представляет собой несколько труб большого диаметра соединенными между собой и с заваренными торцами. К таким конструкциям можно отнести полотенцесушители в виде змеевика с несколькими петлями.
  • Перегруппировка радиаторов с добавлением секций
    . Этот вариант наиболее затратный, но и по эффективности находится выше остальных.

Рекомендуем! Не забывайте, что установка дополнительных изоляционных материалов также позволяет увеличить теплоотдачу, сократив потерю выделяемого тепла. Однако возможно только при возведении жилого дома с фундамента, либо при демонтаже фасада.

Как выполнить расчёт необходимого диаметра труб отопления

Начиная расчет диаметра трубы для отопления жилого помещения, следует учесть ещё один важный параметр. Это – тепловая нагрузка. В соответствии со стандартами, комфортные условия для проживания в помещении при высоте потолка в 2,5 м обеспечивают 0,1 кВт тепловой мощности, приходящихся на 1 м2 его площади. Следовательно, можно очень легко подсчитать, сколько же потребуется тепла для обогрева, например, комнаты в 20 м2:

В соответствии с таблицей подбирается диаметр труб, способных обеспечить комфортное тепло. В нашем примере, согласно представленной таблице, для того, чтобы в комнате всегда было тепло, вполне подойдут трубы внутренним диаметром в 1/2 дюйма.

Тепловая нагрузка и расход теплоносителя для труб отопления различного диаметра

Расчёт тепловыделений от открыто проложенных труб

Определяя поверхность нагрева приборов, устанавливаемых в помещении, следует учитывать тепловыделение в помещении открыто приложенных трубопроводов (магистралей, если они прокладываются в отапливаемом помещении, стояков, подводок к нагревательным приборам). Для случаев скрытой прокладки трубопроводов их тепловыделение не учитывают.

Тепловыделения от трубопроводов систем отопления следует учитывать в тех случаях, когда они составляют более 5% от теплопотерь помещения. Для квартирных водяных систем отопления с естественной циркуляцией тепловыделения от трубопроводов нужно всегда определять ввиду необходимости тщательного установления температуры теплоносителя в трубопроводах для выявления располагаемого давления.

Количество тепла , отдаваемое открыто проложенными не­изолированными трубопроводами, определяют по формуле

наружная поверхность трубы, м2;

d —наружный диаметр трубопровода, м;

—длина трубопровода, м;

кт — коэффициент теплопередачи труб, ккал/мг-ч-град; при теплоносителе воде кт =

= 11—12,5 ккал/м2-ч-град; при паре низкого давления Кт^ *=13 ккал/м2-ч-град;

т —температура стенки трубы, принимаемая равной температуре теплоносителя, град;

расчетная температура воздуха помещения;

φ — коэффициент, характеризующий условия изменения теплоотдачи а зависимости от места расположения трубопровода в помещении, принимаемый по таблице 1

Таблица 1 – Коэффициент изменения теплоотдачи в зависимости от места расположения трубопровода в помещении

Расположение трубопровода в помещении φ Расположение трубопровода в помещении φ
Подводка к приборам и сцепки Трубопроводы, проложенные у пола 1,00 0,75 Стояки Трубопроводы, проложенные у потолка 0,50 0,25

Потери тепла изолированными трубопроводами определяются в ккал/ч по формуле

– коэффициентполезного действия тепловой изоляции трубы, принимаемой ≈ 0,8.

Потери тепла неизолированными трубопроводами различных диаметров указаны в таблице 2

Таблица 2 – Потери тепла неизолированными трубами длиной 1 м при tт – tв = 1°, ккал/ч

Внутренний диаметр, мм 15,75 21,25 35,7 67,5
Теплопотери, q 0,78 0,97 1,22 1,54 1,75 2,09 2,51 2,53 3,4 4,23 5,06

При пользовании этой таблицей потери тепла трубопроводами водяных систем определяются с достаточной для практики точностью по формуле

– потери тепла поверхностью неизолированной трубы длиной 1 м при Δt = 1°.

Как видно, окончательно определить поверхность нагрева приборов при учете потерь тепла трубопроводами можно только после проведения гидравлического расчета трубопроводов систем отопления.

Расчетную теплоотдачу приборами определяют по формуле

– расчетная теплоотдача нагревательных приборов с учетом потерь тепла трубами, ккал/ч;

– потери тепла ограждениями отапливаемого помещения, ккал/ч;

– теплоотдача трубами, проложенными в отапливаемом помещении, ккал/ч.

С достаточной для практики точностью для неизолированных труб теплопотери можно определять по формуле

– наружный диаметр трубы, м;

– средняя температура теплоносителя, °С;

t0 – температура окружающей среды, °С;

– коэффициент, учитывающий дополнительные потери арматурой;

– коэффициент теплоотдачи. Для воздуха при слабом его движении определяется по приближенной формуле:

Отопительные приборы

  • теплый пол;
  • регистры (радиаторы);
  • полотенцесушители.

Теплый пол

Для водяного теплого пола используются трубы, но стальные применяют редко. Они не устойчивы к коррозии, склонны к накоплению отложений (что уменьшает просвет), требуют сварки. При использовании резьбовых соединений в ходе эксплуатации неизменно появляется течь. А это совсем не желательно при укладке системы под стяжку, так как повлечет за собой мокрый потолок у соседей снизу или разрушение перекрытия. Исходя из этого, для теплого пола чаще всего используются металлопластиковые изделия.

Регистры

Регистр – это несколько труб большого диаметра с заваренными торцами, которые соединены параллельно. Это самый дешевый отопительный прибор. Но к регистрам можно отнести так же магистральные линии, состоящие из гладкоствольных труб, радиаторы, полотенцесушители, трубчатые — радиаторы. Самые примитивные регистры до сих пор можно увидеть в старых складах и магазинах, где от нескольких толстых труб на стене ощущается жар. Регистром можно считать так же толстую трубу, которая протянута по периметру помещения.

Но простой регистр менее эффективен, чем, например, алюминиевый радиатор, оснащенный металлическими пластинами. Об эстетической стороне простого стального регистра даже не стоит и говорить. Но в советское время подобный отопительный прибор был простым и дешевым решением, имеющим и достоинство – отсутствие необходимости в очистке внутренней поверхности, так как выделял достаточно тепла и после ее зарастания продуктами коррозии и иными отложениями.

Увеличить теплоотдачу регистра можно, прикрепив металлические пластины. В таком случае он будет выполнять и декоративную роль, превратившись в дизайн–радиатор, несущий определенную нагрузку в интерьере помещения.

Смонтировать регистр можно только при помощи сварки, что ограничивает сферы применения. Однако, если создать правильную схему и сварочные работы провести вне помещений, окончательная сборка возможна без сварочных работ.

Полотенцесушители

Полотенцесушители из стальных труб еще встречаются в домах, которые построены в советское время. Тогда они монтировались при помощи резьбовых соединений и нагревались только в то время, когда жильцы пользовались горячей водой. То есть, то нагревались, то остывали, что приводило к протечкам.

Позже полотенцесушители сделали частью стояков отопления и монтировали при помощи сварки. Они стали нагреваться непрерывно, но размер приборов значительно уменьшился.

Отопительные регистры виды, расчет и изготовление своими руками

Стальные водогазопроводные трубы являются самым популярным металлопрокатом широкого применения. Кроме использования для прокладки коммуникаций в соответствии с названием, они успешно выполняют функции отопительных приборов. Из труб вгп изготавливают гладкие и ребристые регистры разной конфигурации, которые по эффективности теплоотдачи не уступают современным радиаторам. Они прекрасно подходят для транспортировки теплоносителя в системах с естественной циркуляцией, при этом попутно участвуя в обогреве помещений.

Устанавливая стальные водогазопроводные трубы для отопления, очень важно знать их основные характеристики. В первую очередь к ним относятся вес и коэффициент теплоотдачи. Тщательно выполнив предварительные расчеты, вы убережете себя от неожиданных сложностей при монтаже и обеспечите требуемый эффект при эксплуатации.

Виды отопительных регистров

Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:

  • Змеевиковые;
  • Секционные.

На рисунке показаны некоторые варианты их конструктивного исполнения.

Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.

Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.

Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.

По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.

Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.

Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Монтаж

Вот инструкция по монтажу гофрированной нержавейки, любезно выложенная в общий доступ производителями труб.

Сборка фитинговых соединений


Сборка фитингового соединения.

  • Труба режется по месту труборезом. В его отсутствие можно использовать болгарку с кругом по металлу. Не забудьте удалить с реза оставшиеся внутри трубы заусенцы;


Труборез для нержавеющей трубы.

  • Труба вставляется в фитинг с ослабленной гайкой с заметным сопротивлением, до упора;
  • Гайка затягивается с умеренным усилием с помощью рожкового, разводного или газового ключа. При этом нужно придерживать корпус фитинга, не давая ему провернуться или смять следующий участок трубопровода.


Порядок монтажа соединения.


Гофрированная нержавеющая труба использована для выноса радиатора.

Прокладка

Выше я упоминал, что гибкость трубы заставляет крепить ее с минимальным шагом. Компания Lavita в техпаспорте к своей продукции приводит конкретные значения. При горизонтальной прокладке стоит придерживаться следующих расстояний между клипсами:

Диаметр Шаг крепления
15 мм 500 мм
20 мм 600 мм
25 мм 750 мм
32 мм 900 мм

При вертикальном монтаже шаг между точками крепления составляет 1 метр для диаметра до 32 мм и 1,5 метра для более толстых трубопроводов.

При укладке в пол в момент заливки бетоном трубопровод должен находиться под давлением в 10 атмосфер. Минимальная толщина слоя бетона, накрывающая трубы — 30 мм. Заливка проводится только после испытаний на герметичность.


Укладка нержавейки в систему низкотемпературного отопления (теплый пол).

Опрессовка после монтажа выполняется при давлении на четверть больше штатного. Соединения проверяются на предмет течей через 4 часа после начала опрессовки.

Трубопровод должен монтироваться с отступом от стены. Минимальное расстояние между стенками соседних гофрированных труб при параллельной прокладке составляет 10 мм.


На практике при укладке в теплый пол шаг между трубами составляет не менее 100 мм.

Металлопластиковые трубы (MP, PEX-AL-PEX, PP-AL-PP, PE-AL-PE)

Синтез положительный качеств металлических и пластиковых труб.

Преимущества.

  • Устойчивость к перепадам температур
  • Простота монтажа
  • Гибкость
  • Минимальное линейное растяжение
  • Многовариантность монтажа
  • Доступная цена
  • Срок эксплуатации 30 лет
  • Привлекательный внешний вид труб и фитингов.

Металлопластиковые трубы продаются в бухтах длиной до 50 метров и позволяют выполнить монтаж системы отопления с минимальным количеством соединений. Гибкость трубы обеспечивает исполнение поворотов под 900 с минимальным радиусом. Превосходно зарекомендовали в системах теплых полов и при прокладке внутри стен. Монтаж удобен тем, что нет отходов труб.

Недостатки

Основные претензии потребителей относятся не столько к самим трубам, сколько к стоимости фитингов для металлопластиковых труб. Существенный недостаток соединительных элементов — зауженное проходное сечение по сравнению с основой трубой. Необходим постоянный контроль бесперебойной работы котла. При его остановке в отсутствии хозяев и замерзании воды, неизбежно произойдет порыв системы. Поэтому систему лучше заполнить антифризом с рабочей температурой до +95С.

Монтаж металлопластиковых труб предоставляет более широкий выбор вариантов монтажа. Их соединяют тремя способами:

  • Разъемное соединение
  • Условно — разъемное
  • Неразъемное

Более подробно с металлопластиковыми трубами можно на видео:

Сравнение с конкурентами

Исследование современного рынка труб приведет нас к любопытному выводу: прямых конкурентов с точки зрения потребительских качеств у гофрированной нержавейки просто нет. Почему?

  • Полимерные (сшитый полиэтилен, полипропилен) и металлополимерные трубы отличаются более низкой термостойкостью. Мало того: эксплуатация при предельных температурах существенно снижает их ресурс. Обещанные производителем для полипропилена 50 лет службы при 90 С превращаются в 7-10;


При росте эксплуатационной температуры полипропиленовых труб срок их службы резко снижается.

Штатная температура в системе центрального отопления не должна превышать 95С. Однако в сильные холода в ряде случаев практикуется запуск элеватора со снятым соплом и заглушенным подсосом. В этом случае в батареи поступает не смесь подачи и обратки, а вода из подающей нитки теплотрассы, температура которой может достигать 150С.

  • Разрушающее давление у лучших образцов полимерных и металлопластиковых изделий не превышает 40 атмосфер. Это означает, что гидроудар может стать губительным для вашей системы отопления. А гидроудары в контурах ЦО более чем реальны: стоит быстро заполнить сброшенную систему — и давление на фронте воды кратковременно достигнет 30 и более кгс/см2;
  • Стальные (черные и оцинкованные) водогазопроводные трубы с резьбовыми фитингами не уступают нержавейке механической прочностью, но куда сложнее в монтаже. Черные трубы требуют применения сварки, оцинковка — нарезки большого количества резьб с изготовлением патрубков и сгонов с минимальными допусками.


Монтаж на резьбах — очень утомительное занятие.

Срок службы черной стали несопоставим с нержавейкой, поскольку она подвержена коррозии. Первые течи на стальных подводках к радиаторам мне доводилось наблюдать уже через 10 — 12 лет после сдачи домов в эксплуатацию. Коррозия резко ускоряется при сбросе системы отопления на лето: влажность и доступ кислорода заставляют трубы ржаветь ударными темпами.


Сравнение нержавейки с обычной стальной трубой.

Важный момент: прочность и термостойкость гофрированной нержавейки будет востребована только в системах центрального отопления. В автономных контурах все параметры полностью подконтрольны владельцу, поэтому владельцы коттеджей могут обойтись более дешевыми материалами.

Расчетные показатели

Чтобы вычислить мощность отопительного оборудования, а также выяснить масштаб теплопотерь при транспортировке теплоносителя, необходимо будет выполнить теплосъем с трубы при определенных показателях температуры жидкости внутри нее и воздуха снаружи. Теплоизоляционный слой служит дополнительным параметром.

Формула для расчета теплоотдачи трубы из стали выглядит так:

Q=K×F×dT, в которой:

Q – искомый результат теплоотдачи стальной трубы в килокалориях;

K – коэффициент теплопроводности. Он зависит от материала трубы, ее сечения, числа контуров отопительного оборудования, а также расхождения в температурах между внешним воздухом и теплоносителем;

F – общая площадь поверхности трубы или нескольких труб в приборе;

dT – напор температуры, то есть ½ суммарной температуры жидкости на входе и выходе из трубы за вычетом температуры воздуха в помещении.

Если трубы дополнительно обернуты слоем теплоизоляции, то ее КПД в процентном выражении (количество пропускаемого сквозь нее тепла) умножают на полученный показатель теплоотдачи.

Для примера рассчитаем теплоотдачу регистра из трех труб сечением 100 мм, длиной 1 м. В помещении температура равна 20 ℃, а теплоноситель при прохождении сквозь трубу остывает с 81 до 79 ℃.

Согласно формуле S=2пиrh рассчитываем площадь поверхности цилиндра:

S= 2×3,1415×0,05×1=0,31415 м 2 . Если трубы три, то их общая площадь составит 0,31415×3 = 0,94245 м 2 .

Показатель dT = (79+81):2-20 = 60.

Значение K для регистра из трех труб с температурным напором 60 и сечением 1 метр принимаем равным 9. Следовательно, Q=9×1×60 = 540. То есть теплоотдача регистра будет равна 540 ккал.

Таким образом, мы рассмотрели понятия теплоотдачи, а также способы минимизации теплопотерь стальной трубы для тех или иных случаев. Ничего очень сложного в этом нет. Главное, подойти к вопросу ответственно.

Теплоотдачей называется теплообмен между двумя средами, разделенными поверхностью. Интенсивность ее характеризуется с помощью коэффициента. При монтаже теплотрассы должна учитываться проблема энергосбережения. Поэтому старые теплотрассы меняются на новые, в которых используются трубы, оснащенные теплоизоляцией, позволяющей снизить потери тепла почти на 80%.

В быту необходимость определить коэффициент теплоотдачи возникает в двух ситуациях:

  • если нужно рассчитать нагревательные приборы;
  • если требуется оценить потери тепла в трубопроводе.

Как в первом, так и во втором случае нужно определить, сколько тепла отдает пространству труба стальная для теплотрассы, если известна температура теплоносителя и температура среды. Дополнительный параметр – отсутствие или наличие теплоизоляции.

Характеристики стальных труб для отопления, расчет веса и теплоотдачи

Стальные водогазопроводные трубы являются самым популярным металлопрокатом широкого применения. Кроме использования для прокладки коммуникаций в соответствии с названием, они успешно выполняют функции отопительных приборов. Из труб вгп изготавливают гладкие и ребристые регистры разной конфигурации, которые по эффективности теплоотдачи не уступают современным радиаторам. Они прекрасно подходят для транспортировки теплоносителя в системах с естественной циркуляцией, при этом попутно участвуя в обогреве помещений.

Устанавливая стальные водогазопроводные трубы для отопления, очень важно знать их основные характеристики. В первую очередь к ним относятся вес и коэффициент теплоотдачи. Тщательно выполнив предварительные расчеты, вы убережете себя от неожиданных сложностей при монтаже и обеспечите требуемый эффект при эксплуатации.

Сортамент водогазопроводных труб

Водогазопроводные трубы изготавливаются в соответствии с требованиями государственного стандарта – ГОСТ 3262-75. Он действует уже более 40 лет и регламентирует все размеры и технические требования.

В сортаменте выделяется 3 разновидности труб:

  • Легкие;
  • Обычные;
  • Усиленные.

Тип трубы определяется толщиной стенки. Она может варьироваться для разных диаметров от 1,8 до 5,5 мм. Усиление стенок позволяет изделиям выдерживать большее давление и обеспечивает более длительный срок службы. При этом, естественно, увеличивается расход металла на изготовление, стоимость и вес.

Приведенная в ГОСТе таблица веса стальных водогазопроводных труб позволяет определить массу 1 м погонного в зависимости от типа и диаметра.

Важно! Масса, определенная по таблице, является теоретической, фактическое значение может отличаться на 4-8%, что бывает ощутимо при больших партиях. Оцинкованные изделия всегда тяжелее примерно на 3-5%.

Как видно из таблицы, труба водогазопроводная стальная может иметь условный проход от 6 до 150 мм, что соответствует интервалу от ¼ до до 6 дюймов. Размеры в дюймах часто используются для маркировки фитингов и запорно-регулирующей арматуры. Поэтому очень важно правильно оперировать этими единицами измерения при комплектации системы.

На заметку: если под рукой нет таблицы, можно самостоятельно провести пересчет диаметра. Для этого достаточно знать, что 1 английский дюйм соответствует средней толщине большого пальца взрослого мужчины и равняется 25,4 мм. Все калибры легко определить, разделив значение условного прохода на 25 с округлением до ближайшего стандартного значения.

Масса трубы может быть также найдена вручную с помощью простых формул геометрии и физики, представленных на рисунке ниже. При больших объемах расчетов удобно использовать специальный онлайн калькулятор, который позволяет автоматизировать процесс.

На рисунке приняты следующие обозначения:

d – внутренний диаметр трубы;

D – наружный диаметр;

b – толщина стенки;

S – площадь металла в поперечном сечении;

V – объем металла;

m – масса изделия;

ρ – удельный вес стали, равный 7,85 г/см3.

Важно! Следует учитывать, что внутренний диаметр и условный проход – это не одно и то же. Трубы с разными толщинами стенок имеют разные внутренние диаметры при одинаковом условном проходе. Под условным проходом понимают некую стандартную величину в линейке сортамента, которая лишь примерно равна значению d. Приведение труб разных типов к одному условному диаметру значительно упрощает подбор фасонных элементов и других комплектующих.

Необходимо отметить высокие прочностные характеристики стальных труб. Они имеют жесткость, характерную для металлического прута аналогичного диаметра. При этом намного легче и дешевле. Так, изделие самого тяжелого типа будет иметь вес на 30-40% меньше, чем цельнометаллический прокат.

Благодаря этому, водогазопроводная труба широко применяется не только для транспортировки различных сред любой температуры, но также в строительстве и машиностроении для сооружения разнообразных конструкций.

Виды отопительных регистров

Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:

  • Змеевиковые;
  • Секционные.

На рисунке показаны некоторые варианты их конструктивного исполнения.

Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.

Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.

Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.

По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.

Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.

Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.


Определение теплоотдачи

Для правильного подбора размера регистров для отопления помещений в соответствии с теплопотерями необходимо знать значение теплоотдачи трубы длиной 1 метр. Эта величина зависит от используемого диаметра и разницы температур теплоносителя и окружающей среды. Температурный напор определяется по формуле:

где t1 и t2 – температуры на входе в котел и выходе из него соответственно;

tк – температура в отапливаемой комнате.

Быстро определить ориентировочное значение количества тепла, получаемого от регистра, поможет таблица теплоотдачи 1 м стальной трубы. Не смотря на то, что результат получается весьма приближенным, этот метод является самым удобным и не требует проведения сложных расчетов.

Для справки: 1 БТЕ/ час · фут 2 · o F = 5,678 Вт/м 2 К = 4,882 ккал/час· м 2 · o C.

Таблица показывает, какой будет теплоотдача стальных труб в воздушной среде при некоторых температурных перепадах. Для промежуточных значений разницы температур выполняются расчеты путем интерполяции.

Для более точного определения количества тепла, которое дает стальная труба, следует пользоваться классической формулой:

Q=K ·F · ∆t,

где: Q – теплоотдача, Вт;

K – коэффициент теплопередачи, Вт/(м 2 · 0 С);

F – площадь поверхности, м 2 ;

∆t – температурный напор, 0 С.

Принцип определения ∆t был описан выше, а значение F находится по простой геометрической формуле для поверхности цилиндра: F = π·d·l,

где π = 3,14, а d и l – диаметр и длина трубы соответственно, м.

При расчете участка длиной 1 м формула приобретает вид Q = 3,14·K·d·∆t.

На заметку: при определении теплоотдачи одиночной трубы достаточно подставить справочное значение коэффициента теплообмена для стали при передаче тепла от воды к воздуху, которое составляет 11,3 Вт/(м 2 · 0 С). Для отопительного прибора значение К зависит не только от материала, из которого изготовлены трубы, но также от их диаметра и количества ниток, так как они влияют друг на друга.

Средние значения коэффициентов теплопередачи для самых популярных типов нагревательных приборов приведены в таблице.


Важно! Подставляя значения в формулы необходимо внимательно следить за единицами измерения. Все величины должны иметь размерности, которые согласовываются между собой. Так, коэффициент теплопередачи, найденный в ккал/(час· м 2 · 0 С) необходимо перевести в Вт/(м 2 · 0 С), учитывая, что 1 ккал/час = 1,163 Вт.

Безусловно, таблица теплоотдачи стальных труб позволяет получить результат более быстро, чем расчет по формулам, но если важна точность, придется немного повозиться.

Чтобы определить необходимый размер регистра, требуемую тепловую мощность нужно разделить на теплоотдачу 1 метра с округлением в большую сторону к ближайшему целому числу. Для ориентира можно взять средние данные для утепленного помещения высотой до 3 м: 1 м регистра при диаметре 60 мм способен обогреть 1 м 2 помещения.

На заметку: Как видно из таблицы, коэффициент К для стальных труб может меняться от 8 до 12,5 ккал/(час· м 2 · 0 С). Увеличение диаметров и количества ниток приводит к уменьшению эффективности передачи тепла. В связи с этим для увеличения теплоотдачи регистра следует отдавать предпочтение увеличению длины элементов.

Необходимо учитывать также, что трубы больших размеров требуют повышенного объема воды в системе, что создает дополнительную нагрузку на котел. Рекомендуемое расстояние между нитками равно равняться диаметру труб плюс еще 50 мм.

Если система заполняется не водой, а незамерзающей жидкостью, то это существенно влияет на теплоотдачу регистра и требует увеличения его размеров после проведения дополнительных расчетов. Это особенно актуально при использовании приборов с ТЭНами и маслом в виде теплоносителя.

Заключение

Стальной трубопровод является довольно прочным, долговечным изделием с хорошей теплоотдачей. Регистры из гладких труб могут иметь различные конфигурации, очень удобны в уходе и не требуют периодической промывки. Это позволяет им успешно конкурировать с легкими биметаллическими и алюминиевыми отопительными приборами, а также с традиционными «неубиваемыми» чугунными радиаторами.

Водогазопроводные трубы получили широкое распространение в наружных тепловых сетях при открытой прокладке благодаря высокой жесткости и износоустойчивости. Целесообразность использования стальных труб для отопления помещений определяется условиями эксплуатации, финансовыми возможностями и эстетическим вкусом хозяев. Применение регистров наиболее оправдано в производственных и технических помещениях, но и в других случаях у них найдутся свои преимущества.

Как рассчитать теплоотдачу стальной трубы и для чего это делается

Опубликовано 18 мая 2021 Рубрика: Теплотехника | 31 комментарий

Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее…

…программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

y=f (x1, x2, x3, …, xn), где:

  • y – значение функции (искомый расчетный параметр);
  • x1,x2,x3, …,xn – значения аргументов функции (исходные данные).

Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

С какой целью рассчитывают теплоотдачу стальных труб

Преимущественно, расчет теплоотдачи стальных труб производится в таких случаях:

  • если нужно определить мощность нагревательных приборов для системы отопления в доме;
  • если возникла необходимость оценки теплопотерь, происходящих во время транспортировки теплоносителя по трубопроводу.

Стоит отметить, что нагревательные контуры, сквозь которые может отдаваться тепло, устанавливают в таких приборах:

  • полотенцесушители и змеевики;
  • регистры;
  • системы теплого пола.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

dT = (0,5*(T1 + T2)) — Tк

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Системы теплых полов

Если речь идет о водяном теплом полу, в отличие от электрического аналога, в качестве нагревательного контура в нем используются металлические трубы, хотя, их стали применять в последнее время все реже.

Главная причина снижения спроса на водяной теплый пол заключается в постепенном изнашивании стальных труб, снижении просвета в них. Кроме того, имеет значение и способ монтажа – сварные швы выполнить сможет далеко не каждый, а резьбовое соединение грозит утечкой теплоносителя через некоторое время. Естественно, никому не понравится результат утечки воды из системы в полу со стяжкой – будет затоплен потолок нижнего этажа или подвала, а перекрытие постепенно придет в негодность.

По этим причинам на замену стальным трубам в теплых водяных полах сначала пришли металлопластиковые змеевики, фитинги на которые крепились за пределами стяжки, а в настоящее время предпочитают армированный полипропилен.

Такому материалу присуще незначительное тепловое расширение, а при грамотной укладке и эксплуатации они могут прослужить не один десяток лет. Как вариант, используют и другие полимерные материалы.

Обратите внимание, что зазоры для теплового расширения армированного полипропилена все же нужно оставлять, хоть оно и небольшое.

Зачем это нужно?

Безупречная эстетика, смертоносная эффективность

В общем и целом посчитать коэффициент теплоотдачи трубы нужно в двух категориях случаев:

  • При расчете нагревательных приборов;
  • Чтобы оценить количество потерь тепла на трубопроводах, транспортирующих теплоноситель.

Отопительные приборы

Что за нагреватели используют в качестве отдающих тепло элементов трубы?

Из широко распространенных стоит упомянуть:

  • Теплый пол;
  • Полотенцесушители и разнообразные змеевики;
  • Регистры.
Теплый пол

В качестве нагревательного элемента для водяного теплого пола (есть еще и теплый пол с электрическим подогревом) практически всегда выступают именно трубы; однако использование стальных труб для отопления последнее время стало редкостью.

Причины очевидны: стальная труба подвержена коррозии и уменьшению просвета со временем; монтаж трубы без резьбовых соединений требует наличия сварки; монтаж стальной трубы на трубных резьбах — это всегда потенциальные утечки. А что такое течи в полу, под стяжкой? Мокрый потолок на нижнем этаже или в подвале и постепенное разрушение перекрытия.

Именно поэтому в качестве нагревательного элемента для теплого пола совсем недавно предпочитали использовать змеевики из металлопластиковой трубы ( с обязательным монтажом фитингов вне стяжки), сейчас же в стяжку все чаще укладывается армированный полипропилен.

Он имеет низкий коэффициент теплового расширения и при правильном монтаже не требует ремонта и обслуживания много десятилетий. Применяются и другие пластики.

Теперь это делают так

Совет: обязательно оставьте небольшие зазоры на тепловую деформацию трубы. Армированный полипропилен вытягивается при нагреве меньше неармированного, но все же вытягивается.

Полотенцесушители

Стальные полотенцесушители весьма распространены в домах советской постройки. Еще совсем недавно они были частью типового проекта любого строящегося дома, причем вплоть до 80-х годов всегда монтировались на резьбовых соединениях.

Циркуляционные врезки в элеваторных узлах, обеспечивающие постоянно горячие стояки отопления, тоже появились относительно недавно.

Раз так — режимом работы полотенцесушителя были повторяющиеся охлаждения и нагревы. Расширения — сжатия. Как на это реагировали резьбовые соединения? Правильно. Начинали течь.

Позже, когда полотенцесушители стали частью стояков отопления и загрели круглосуточно, проблема течей отошла на второй план. Сам же размер сушилки (и, соответственно, эффективная площадь теплоотдачи) резко уменьшился. Причина — изменение среднесуточной температуры.

Если раньше змеевик в ванной нагревался лишь тогда, когда владельцы ванной пользовались горячей водой, то теперь грел постоянно.

Экстремалы и теперь устанавливают стальные сушилки в ванных

Регистры

Во многих производственных помещениях, в складах и даже некоторых давно не ремонтировавшихся магазинах внимание привлекает несколько рядов толстых труб под окном, от которых идет ощутимый жар. Перед нами один из дешевейших отопительных приборов эпохи развитого социализма — регистр.

Он представляет собой несколько толстых труб с заваренными торцами и перемычками из тонких трубок. В простейшем варианте это вообще может быть одна толстая труба, идущая по периметру помещения.

Забавно сравнить теплоотдачу стального регистра с занимающей сопоставимый объем в комнате алюминиевой батареей современного образца. Разницы в теплоотдаче в разы.

Как за счет большей теплопроводности алюминия, так и за счет огромной поверхности теплообмена с воздухом у современного решения. Об эстетике в случае регистра говорить, сами понимаете, не приходится вообще.

Однако регистр был решением дешевым и доступным. К тому же крайне редко требовал ремонта или обслуживания: забитая даже наполовину труба продолжала греть, ну а проваренный электросваркой шов течь начинал примерно после пятисотого удара кувалдой.

В самом деле, чему тут ломаться?

Полотенцесушители

В домах старой постройки полотенцесушители из стальных труб встречаются очень часто, ведь в большинстве случаев они были заложены проектом, причем почти до конца прошлого века врезались в систему на резьбе.

Не так давно стали применять циркулярные врезки в элеваторных узлах, которые обеспечивают стабильную горячую температуру прибора.

Поскольку нагревательные контуры в полотенцесушителях постоянно подвергались перепадам температур – то нагревались, то остывали – резьбовым соединениям было сложно выдержать такой режим, поэтому они периодически начинали подтекать.

Несколько позднее, когда прогрев этих приспособлений стал стабильным благодаря врезке в стояки отопления, проблема протечек стала не настолько актуальной. В то же время размеры змеевика стали намного меньше, в результате чего снизилась площадь теплоотдачи стальной трубы. Однако такой полотенцесушитель оставался теплым не только во время использования горячей воды, а постоянно.

Методы повышения теплоотдачи

Круглая форма отнюдь не способствует увеличению теплоотдачи металлических труб. Еще более низкий коэффициент отношения объема и поверхности можно встретить только у сферы.

Следовательно, проблема как увеличить теплоотдачу трубы, несомненно, стояла у разработчиков первых простых отопительных приборов.

Чтобы увеличить коэффициент теплоотдачи стальной трубы раньше применялись такие методы:

  • Поверхность трубы покрывали матовой черной краской, чтобы усилить инфракрасное излучение нагревательного элемента. Это позволяло добиться значительного роста температуры в помещении. Стоит отметить, что современное хромирование на полотенцесушителях крайне неэффективно для усиления теплоотдачи – оно, скорее, для красоты.
  • Увеличение теплоотдачи трубы за счет наваривания на нее дополнительных ребер, что делало площадь нагревательного элемента, а значит и теплоотдачу, существенно больше. Наиболее передовым вариантом использования данного способа можно назвать конвектор, то есть участок загнутой трубы с приваренными поперечными ребрами. Хотя сама труба в данном случае отдает минимум тепла.

Любым из этих методов можно воспользоваться, если стоит вопрос, как увеличить теплоотдачу трубы отопления своими руками, ведь они совсем не сложные и вполне осуществимы в домашних условиях.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теплопотери сквозь трубы

В условиях квартир особого смысла рассчитывать теплоотдачу нержавеющей трубы нет, ведь в данном случае все тепло, отдаваемое стояком и отопительными контурами, будет рассеиваться внутри, обогревая помещение.

А вот если необходимо качественно обогреть подвальные или складские мощности, а теплоноситель к ним должен подаваться из другого места, то в данном случае расчет теплоотдачи трубы будет более чем целесообразен, чтобы можно было сориентироваться, сколько тепла теряется по пути. Тогда можно попробовать поискать способы сократить теплопотери труб с горячей водой.

Применение теплоизоляционных материалов

Наверное, первое, что приходит в голову при необходимости сохранить максимум тепла внутри трубы – это обмотать ее теплоизоляционным материалом. В конце прошлого века для этих целей применяли утеплитель из стекловолокна с дополнительной обмоткой негорючей тканью (данный способ рекомендован нормативной базой). Еще чуть раньше активно использовались растворы гипса или цемента, то есть теплоизоляция получалась твердой. В действительности же нерадивые сантехники нередко просто обматывали трубы старой ветошью, в надежде, что никто не проконтролирует.

Обилие современных материалов, например накладки на трубы из пенопласта, разрезные полиэтиленовые оболочки, минеральная вата и прочие, позволяет выполнить теплоизоляцию отопительных труб намного более качественно. И в новостройках такие материалы с успехом применяются. Тем не менее, отсталость ЖЕКов зачастую приводит к тому, что трубы по старинке обматывают тряпьем.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: