Как замерить силу тока мультиметром

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Электромонтажные и пусконаладочные работы всегда связаны с измерением характеристик электрической сети, проверки наличия напряжения и работоспособности цепей прибора или линии. Для этих целей существует огромное количество различных измерительных приборов и тестеров, но самым универсальным и полезным прибором для домашних мастеров и профессионалов является мультиметр. В этой статье рассмотрим как им пользоваться.

Внешний вид мультиметра

Мультиметр – это универсальный прибор для измерения электрических характеристик, который объединяет в себе множество функций (в зависимости от модели). В минимальной комплектации такой прибор состоит из амперметра, вольтметра и омметра. В самом распространенном варианте он выполняется в цифровом виде портативного исполнения. Внешне имеет прямоугольную форму с дисплеем и поворотным или кнопочным переключателем функций. Для выполнения замеров к мультиметру подключаются два щупа (красный и черный) в строгом соответствии с маркировкой на приборе.

Краткое описание измеряемых параметров и их обозначение

Для обозначения параметров на мультиметрах производители применяют стандартную маркировку на английском языке или специальные символы. Для работы с прибором важно знать основы электротехники, чтобы правильно и безопасно осуществлять необходимые измерения.

Каждый прибор разделен на зоны с настройками для работы с определенным видом напряжения электрической сети:

– напряжение переменного тока;

  • DCV или V- – напряжение постоянного тока;
  • DCA или A- – сила постоянного тока;
  • — сопротивление на участке цепи или в электрическом приборе.
  • Назначение разъёмов для подключения щупов

    В зависимости от модели мультиметра, количество гнёзд для подключения щупов, может быть различным. Подключать щупы для измерения электрических параметров сети необходимо в правильные гнёзда прибора. У большинства измерительных приборов маркировка гнёзд следующая:

    • 10А- – для замера постоянного тока не превышающего 10 А (в это гнездо подключают красный плюсовой щуп);
    • VΩmA или VΩ, V/Ω — в это гнездо подключают красный (плюсовой) щуп при определении напряжения, силы постоянного тока до 200 мА, для прозвонки диодов и цепей;
    • COMMOM (COM) – общее гнездо для черного (минусового) щупа на всех типах мультиметров;
    • 20А – такое гнездо существует не на всех моделях (чаще всего можно встретить на дорогих профессиональных устройствах), задача этого гнезда аналогична 10А-, но с пределом до 20 А.

    Какие ещё могут быть кнопки

    Помимо основных настроек мультиметра, он может иметь и дополнительные. Дорогие профессиональные устройства намного функциональнее бюджетных вариантов и позволяют специалисту производить следующие измерения:

    • силы переменного тока (при наличии токоизмерительных клещей);
    • целостность цепей (прозванивать), то есть проверять сопротивление сигнализируя о результатах с помощь звуковой или световой сигнализаций, а также показаниями на дисплее;
    • тестирование работоспособности диодов (переключатель ->Ι-);
    • параметров транзисторов (разъёмы и кнопки с обозначением hFE);
    • ёмкости и индуктивности;
    • температуры (для этого используется внешний датчик — обычно термопара).
    • частоты (Hz).

    Некоторые модели имеют дополнительные функции по индикации и обеспечению работы с устройством: подсветку, автоотключение питания и экономичный режим для аккумулятора, фиксирование результатов (кнопка hold) и запись в память устройства, выбор пределов измерений и индикацию по перегрузке и разряду батареи. Для безопасной работы с мультиметром важно, чтобы прибор имел определенную защиту при неправильном выборе предела измерений или режима работы. Обычно такая защита осуществляется с помощью плавких предохранителей и автоматических выключателей. Большинство качественных приборов от ответственных производителей имеет такую защиту.

    Как измерять напряжение

    Для человека, который имеет определенные навыки и знания в электротехнике не составит особого труда производить измерения с помощью мультиметра. Для тех, кто никогда не работал с таким типом устройств, ниже представлено как пользоваться стандартным мультиметром.

    Важно! Все работы, должны проводится специалистами или людьми, имеющими определенные навыки в электротехнике. Помните, что поражение электричеством опасно для жизни!

    Постоянное напряжение

    С помощью этого режима измеряется напряжение элементов питания, батареек и аккумуляторов автомобилей. Большинство цепей управления в современных системах АСУТП имеют потенциал 24 В постоянного тока.

    Для того, чтобы выполнить измерение в этом режиме необходимо перевести прибор в положение DCV, при этом замер (если не знаете примерное напряжение) лучше всего начинать с максимального значения переключателя, постепенно уменьшая диапазон, до получения нужной размерности. Если на экране прибора результат измерения отображается со знаком «минус», то значит была нарушена полярность подключения щупов (это значит «минус» был подключен к «плюсу» цепи, в которой производится измерение, а «плюс» к «минусу»).

    Что касается размерности, то тут все просто: если, к примеру, на экране высвечивается цифра 003, то значит необходимо уменьшить диапазон измерения. Постепенно снижая величину напряжения с помощью переключателя, будет высвечиваться 03, 3.

    Если на дисплее отображается цифра «1» или другое непонятное число, то скорее всего неправильно выбран режим работы или необходимо повысить верхний предел измеряемого напряжения. Другими словами измеряемое значение напряжение должно быть меньше, чем верхний предел, выбранный на мультиметре.

    Читайте также:
    Как осуществить прогрев бетона трансформатором?

    Стандартные значения для переключателя в зоне постоянного напряжения: до 200мВ, 2В, 20В, 200В, 1000В.

    Обратите внимание! Произвести измерение напряжения на термопаре, значение которого всего несколько милливольт, скорее всего не получиться из-за погрешности мультиметра.

    Переменное напряжение

    Режим измерения напряжения переменного тока включается перемещением переключателя в положение V

    или ACV. Этот режим также имеет несколько диапазонов. Обычно на стандартных мультиметрах есть два варианта выбора переменного напряжения: до 200 В и до 750 В.

    Например, для измерения напряжения в бытовой сети 220В, устанавливают переключатель на 750 В и в розетку вставляют два щупа (в разные отверстия). На дисплее отобразится действительное напряжение в текущий момент времени. Обычно это значение от 210 до 230 В, другие показания уже являются отклонениями от нормы.

    Измеряем силу тока

    Для этого необходимо знать какой ток будем измерять: постоянный или переменный. Большая часть стандартных мультиметров способна выполнять измерения постоянного тока, а вот для переменного требуются мультиметры с токоизмерительными клещами.

    Постоянный ток

    Для этого перемещаем переключатель мультиметра в режим DCA. Красный щуп должен быть подключен к гнезду с обозначением «10 А», а черный к «COM». Если значение измеряемого тока до 200 мА, то для большей точности показаний, красный щуп переставляем в разъём 200 мА. В любом случае, чтобы не спалить прибор, измерения лучше всего начинать с щупом в разъёме 10 А и при необходимости его переставить. То же самое производим и с переключателем: сначала выставляем наибольший ток, постепенно уменьшая диапазон для получения нужного максимального предела до минимального значения в 2000 микроампер.

    Обратите внимание! Для измерения постоянного электрического тока, щупы мультиметра располагают в разрыв цепи.

    Необходимо знать, что щупы мультиметра подключаются в разрыв цепи. То есть красный щуп устанавливается на «плюс» источника питания, а черный к «плюсовому» проводнику.

    Переменный ток

    Значение силы переменного тока позволяет измерить мультиметр, имеющий в составе специальные токовые клещи.

    Принцип работы токоизмерительных клещей заключается в явлении электромагнитной индукции. Измерение производится бесконтактным способом, путем помещения проводника в электромагнит со вторичной обмоткой. Первичный ток (измеряемый), пропорционален вторичному (который возникает на обмотке). Поэтому прибор с легкостью рассчитывает искомое значение первичного переменного тока.

    При измерении устанавливается максимальный предел (аналогично измерениям постоянного тока), проводник заводится внутрь клещей, как на фото выше и на экране высвечивается измеренное значение в амперах.

    Измеряем сопротивление

    Для замера сопротивления переключатель устанавливается в режим сопротивления (Ω) и выбирается нужный диапазон. Один из щупов прикладывается к одному входу резистора, другой к другому. При этом на дисплее высветится значение сопротивления. Переключая диапазон можно получить нужную размерность значения сопротивления.

    Если на дисплее высвечивается «нуль», то следует уменьшить диапазон, а если «1» то увеличить.

    Как прозвонить провода мультиметром

    Прозвонка проводов означает определение из целостности. По сути мультиметр определяет сопротивление замкнутого контура и если это значение близко к нулю, то контур считается замкнутым и выдаётся звуковой сигнал. Не всякий мультиметр может прозванивать провода со звуком, но большинство из них на это способны.

    Прозвонка — это проверка целостности цепи. Для прозвонки проводов мультиметр устанавливается в нужный режим. Чаще всего он совмещен с прозвонкой диодов, но может быть вынесен отдельно и отмечен знаком колокольчика. Далее один щуп прикладывается к одному концу проводника, а другой щуп к другому. При этом звучит сигнал или появляется индикация светом или на дисплее. Если индикация есть – цепь не разорвана, если нет, то проводник поврежден или цепь разорвана.

    Проверка диодов, конденсаторов и транзисторов (режим hFE)

    Этот режим имеет не каждый прибор. Для проверки сопротивления диодов, выбирается соответствующий режим и по аналогии с прозвонкой проводника выполняются нужные действия.

    Для определения параметров конденсаторов и транзисторов на приборе устанавливается специальный режим «hFE».

    У транзисторов имеются три выхода: база, эмиттер и коллектор, которые подключаются к разъемам В, E, F мультиметра. При правильном подключении на дисплее отобразится величина усиления транзистора.

    У конденсаторов емкость измеряется путем установки концов конденсатора в разъемы с обозначением Сх. При этом на дисплее отобразится номинальное значение ёмкости электронного компонента.

    Проверка электродвигателей разного вида с помощью мультиметра

    Для чего предназначены токоизмерительные клещи?

    Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

    Прозвонка проводов с помощью мультиметра — что это значит и как выполняется

    Как измерить ёмкость конденсатора мультиметром?

    Как пользоваться мегаомметром для измерения сопротивления изоляции кабеля?

    Читайте также:
    Какой электрокультиватор купить для дачи? Выбираем культиватор правильно

    Основные правила пользования мультиметром.

    Невзирая на многофункциональность и универсальность современных измерительных приборов, профессиональные инженеры осуществляют выбор мультиметра, исходя в первую очередь из тех физических величин, которые требуют как можно более точного измерения.

    Профессиональный мультиметр – прибор, способный полностью удовлетворить потребность измерений в узкой специализированной сфере. Специалисты, читая технические характеристики, точно знают, на что им смотреть, чтобы выбрать лучший инструмент для себя, исходя из соотношения цена-качество.

    Поэтому, данный обзор функциональных возможностей различных мультиметров предназначен для начинающих, чтобы они с одной стороны имели набор необходимых функций, с другой не переплачивали за ненужные возможности.

    Существуют общие понятия, относительно того, как пользоваться мультиметром в процессе осуществления измерений, которые бывают:

    Прямыми. Осуществляются непосредственным подключением щупов к измеряемой цепи, или к отдельному компоненту, с моментальным отображением данных на дисплее или шкале прибора в единицах измеряемой физической величины. Например, измеряя ток, видеть значение силы тока в амперах, мерить напряжение, сразу отображаемое в вольтах, или проверять резисторы, получая сопротивление в Омах.

    Косвенными. Осуществляются путём нескольких последовательных измерений различных величин, с последующим вычислением искомой взаимосвязанной величины. Для примера: требуется измерить мощность потребляемой нагрузки постоянного тока. Для этого нужно измерить напряжение, потом силу тока, и умножить данные значения. Подобным образом можно узнать индуктивность катушки, имея генератор переменного тока – при увеличении частоты будет увеличиваться активное сопротивление индуктивности, соответственно, будет падать сила тока. Часто для косвенных измерений необходима работа нескольких приборов одновременно

    С помощью измерительных преобразователей: шунтов, аттенюаторов, электродов, усилителей, датчиков, можно производить прямые измерения величин, напрямую не связанных с электротехникой. Например, некоторые мультиметры поддерживают подключение датчиков температуры, освещённости, давления и т.д. При помощи специальных электродов, замеряя сопротивление, вычисляют влажность древесины, соленость растворов, кислотность почвы, пользуясь специальными таблицами. Преобразователи, как правило, поставляются отдельно. Но некоторые специализированные мультиметры могут быть оборудованы различными датчиками и преобразователями –токоизмерительными клещами, люксметром, термометром.

    Буквенное обозначение функциональности

    Без привязки к конкретной физической величине нельзя дать ответ на вопрос как пользоваться мультиметром. Давно прошли времена, когда мультиметры измеряли только силу тока, напряжение, и сопротивление, поэтому одна инструкция подходила для всех устройств.

    Современные мультиметры обладают множеством различных функций, которые группируются в одном приборе в зависимости от специализации, и описаны в соответствующих инструкциях от изготовителя. Для облегчения поиска нужного прибора, в каталогах для сокращения обозначения функциональности мультиметра применяют буквенные индексы, являющиеся заглавными буквами английских названий измеряемых физических параметров.

    T – (temperature), измеряет температуру;

    F – (frequency) частотомер (для измерений частоты);

    C – (condenser capacity) емкость конденсатора;

    L – обозначение индуктивности, принятое в честь физика Эмилия Ленца (Lenz);

    R – (resistance), сопротивление.

    Таким образом, например, CRL мультиметром, можно измерить емкость, сопротивление, индуктивность. На корпусе типичного бюджетного мультиметра (для «чайников»), встречаются такие обозначения:

    Мультиметр в домашнем хозяйстве

    Говоря о том, как пользоваться мультиметром в быту, необходимо представить себе житейские ситуации, когда это может понадобиться. Очень часто в домашнем хозяйстве необходимо проверить целостность электрической цепи (прозвонить проводку), или проверить её на наличие недопустимого короткого замыкания.

    Для этих целей подойдёт бюджетный мультиметр, как на картинке. Красный щуп вставляют в разъем V,R,mA, чёрный в COM, переключают прибор в режим «прозвонки», обозначенный диодом или звуковым динамиком. После этого замыкают два щупа, проверяя работоспособность — должен прозвучать сигнал.

    Допустим, необходимо прозвонить интернет кабель. Сначала нужно два разъема поставить рядом. Прикасаясь щупами к клеммам, подключенным к проводам одинакового цвета, добиваются появления сигнала. Если сигнала нет – значит, где-то обрыв (нет контакта).

    Цифровой дисплей при проверке кабеля показывает сопротивление, то есть, если переключате льмультиметра не имеет диода или динамика, то проверить кабель можно с помощью омметра, даже пользуясь стрелочным мультиметром. Режим прозвонки – единственная измерительная функция, которую можно осуществлять, используя стрелочный прибор, не разбираясь при этом в градуировке шкалы и измеряемых величинах.

    Чтобы проверить качество электричества в розетке, нужно переключиться в режим V

    750, вставить щупы и понаблюдать за изменяющимся напряжением в течении некоторого времени.

    Также в данном режиме измерений можно определить фазу. Для этого один щуп заземляют (подключают к корпусу щитка или к заземлению), а другим проверяют провода или клеммы контактов. Появившиеся 220В (или около того) на дисплее будут указывать, что проверяемый провод – фаза.

    Часто в паспорте бытовых устройств указывают номинальный ток. Чтобы измерить ток, протекающий в цепи,мультиметр необходимо включить в ее разрыв. Для этого выставляют переключатель мультиметра в максимальное значение диапазона А

    (переменный ток, 20 А).

    Щупы необходимо подключить в соответствующие разъемы

    Для безопасного подключения оголённых проводников использована лампочка 12В с питанием от трансформатора.

    Под сетевым напряжением, подобным способом, мерить ток нельзя из-за опасности поражения. Но, можно соорудить испытательный стенд, безопасно вставляя щупы в одну розетку и подключая нагрузку к другой.

    Читайте также:
    Как правильно надевать наушники? Как носить и вставлять в уши? Как надевать наушники от iPhone? Как носить поверх шапки?

    Проверять резисторы или другие радиоэлектронные нужно в режиме омметра, переключая соответствующие диапазоны, таким же образом, как делалась прозвонка.

    Измеряя килоомы и мегаомы, необходимо избегать касания пальцами выводов деталей – человеческое тело обладает сопротивлением, которое будет влиять на точность измерений.

    Только так, чтоб исключить сопротивление человека.

    Чтобы пользоваться мультиметром, также необходимо понимать также свойства проверяемых элементов. Например, вопреки бытующему мнению, с помощью мультиметра нельзя проверить заряд батареи при помощи одного измерения напряжения – батарейка или аккумулятор автомобиля будет показывать значение, близкое к номинальному, за исключением полностью посаженных элементов питания.

    Данные источники тока имеют свойство восстанавливать напряжение, благодаря химическим процессам, происходящим внутри, но при выполнении работы у подсевшего аккумулятора напряжение падает. Но, можно сделать измерение силы тока (сквозное подключение мультиметра, или при помощи шунтов), протекающего в подключенной к клеммам аккумулятора нагрузке, подобрав соответствующее сопротивление нагрузки, и потом перейти и переключиться в режим напряжения, таким способом вычисляя выдаваемую мощность источника питания.

    Наблюдая за динамикой падения напряжения, можно судить о том, насколько аккумулятор разряжен. Чтобы объяснить, как проверить конденсатор мультиметром, нужно понимать свойство активного емкостного сопротивления, уменьшающегося по мере увеличения емкости при переменном токе.

    Советские стрелочные мультиметры серии Ц подключали к розетке для получения опорной частоты и с помощью дополнительной клеммы измеряли емкость конденсаторов. Современные мультиметры имеют свой встроенный генератор для подобных измерений, которые производят, подключая щупы к электродам конденсатора.

    У цифровых мультиметров есть внутренняя электронная защита, предотвращающая неправильное использование прибора, а также встроенный плавкий предохранитель, Автоматическое выключение питания способствует экономному расходованию заряда батареи.

    Осуществляя выбор мультиметра, обязательно нужно проверить, как он работает, если батарея частично посажена – дешёвые китайские модели в этом случае дают очень большую погрешность измерений.

    Обязательно нужно соблюдать безопасность, и следить за состоянием измерительных щупов и изоляции проводов – очень часто они отрываются от щупов, и при измерениях могут нанести электрическую травму.

    ЗЫ: Взял где взял, обобщил и добавил немного.

    ЗЫ2: Кому не нужно – проходим мимо.

    ЗЫ3: LF! ,kzl rjgbgfcnf! – До бля копипаста!

    Простите за качество некоторых картинок (чем богаты).

    Нужно ли менять старый индукционный электросчетчик на новый

    Индукционный счетчик электроэнергии с электромеханическим устройством подсчета расхода энергии до сих пор является надежным прибором, установленным в жилых помещениях. Пользователей привлекает его надежность, простота в обслуживании, долгий срок службы и низкая стоимость.

    1. Конструкция индукционного счётчика
    2. Как работает индукционный счётчик
    3. Плюсы и минусы приборов
    4. Нужно ли менять счетчики на новые
    5. Тарифная система учета
    6. Снятие показаний

    Конструкция индукционного счётчика

    Однофазный индукционный счетчик

    Основными составными элементами индукционного электросчетчика являются электромагниты напряжения и электрического тока. При их взаимодействии вместе с входящими в них магнитопроводами появляется электромагнитное поле. Через передаточное устройство поле воздействует на алюминиевый диск вращения.

    Электромагнит тока при работе испытывает большие нагрузки, поэтому его обмотка изготовлена из проволоки большого сечения. Число витков не превышает тридцати. Проволока равномерно намотана на двух магнитах, которые с помощью зажимов подключены последовательно к сети.

    Катушка напряжения параллельно подсоединена к сети и создает электромагнитное поле, прямо пропорциональное действующему напряжению. Обмотка катушки выполнена из тонкой проволоки сечением 0,1…0,15 мм². Число витков может достигать 12000, что позволяет создать индуктивное сопротивление больше, чем активное. Такое устройство позволяет уменьшить расход электроэнергии при работе счетчика.

    Все компоненты механического однофазного электросчетчика размещены в пластмассовом корпусе. Данные по расходу электричества за текущий период выводятся на цифровой барабан. Интенсивность расхода энергии можно определить по величине скорости вращения диска.

    Как работает индукционный счётчик

    Внутреннее устройство индукционного счетчика

    Алюминиевый диск индукционного счетчика электрической энергии является подвижным токопроводящим элементом, на который воздействует электромагнитное поле, создаваемое в катушках счетчика. В результате их действия возникает магнитное поле, переменное по направлению и действующее на диск, в котором создаются вихревые токи, совпадающие по направлению с магнитными потоками.

    Между вихревыми токами и магнитными потоками происходит взаимодействие, которое создает вращающий момент, меняющийся по величине и приводящий во вращение алюминиевый диск. Между вращающим моментом и суммарным магнитным потоком от двух катушек тока и напряжения создается зависимость, с учетом сдвига фазы на 90º и обратной связью. Для получения сдвига фазы магнитный поток электромагнита напряжения разложен на две части.

    Под воздействием вращающего момента диск крутится с частотой в зависимости от величины поступающей энергии. Ось диска связана со счетным устройством цифрового барабана, на котором отражается действительное количество потребляемой энергии.

    Плюсы и минусы приборов

    Дисковый электросчетчик старого образца имеет несколько преимуществ перед новыми электронными моделями счетчиков, которые активно внедряются в жилые дома:

    • имеют высокую степень надежности;
    • простая схема исполнения и принцип действия;
    • стоимость электросчетчика старого образца ниже, чем электронного;
    • безразличны к возможным перепадам напряжения электрической сети;
    • обладают длительным сроком эксплуатации.
    Читайте также:
    Клематис тангутский (30 фото): описание сортов «Радар любви» и «Анита», выращивание из семян, посадка и уход

    При низком классе точности электросчетчика потребитель может как переплачивать за электроэнергию, так и недоплачивать

    В то же время электромеханические счетчики имеют и ряд недостатков, к которым относятся:

    • Низкий класс точности учета электрической энергии, особенно при малых нагрузках.
    • Для оплаты электроэнергии используется только один тариф, в то время как большинство электрических компаний предоставляет разную стоимость электроэнергии в дневное и ночное время.
    • Возможность остановить вращение диска, и даже отмотать показатели назад, чем могут воспользоваться недобросовестные пользователи. Остановка диска возможна и в случае поломки.

    Все недостатки, присущие индукционным изделиям, известны заводам изготовителям. Они постоянно работают над модернизацией и улучшением качества своей продукции, повышая класс точности и срок службы. Однако особенности конструкции не позволяют в полной мере воплотить все эти полезные необходимые условия в устройстве. Поэтому на смену индукционным приборам приходят более совершенные, электронные.

    Нужно ли менять счетчики на новые

    Электросчетчик необходимо менять в случае окончания срока эксплуатации

    Если у вас установлен старый индукционный счетчик, не спешите его поменять на новый. Вполне возможно, что он прослужит еще долгое время, до окончания срока службы, указанного в паспорте, а это почти 20 лет. Однако в некоторых случаях могут заставить произвести замену и вы обязаны будете приобрести новый счетчик.

    Электросчетчики подлежат замене в таких случаях:

    • Проводятся работы по плановому обновлению электрической сети с заменой всех счетчиков.
    • Счетчик неисправен.
    • Закончился срок эксплуатации прибора согласно данным техпаспорта.

    В частный дом разрешено устанавливать электросчетчики с классом точности не более 2

    По закону пользователь при замене необязательно должен устанавливать электронный счетчик. Если ему удобно, он может поставить любой индукционный счетчик электроэнергии, главное, чтобы точность измерений соответствовала требованиям закона: класс точности должен быть 2.0 и выше.

    Оплату расходов по приобретению счетчика и его установке несет владелец, если только не производится плановая замена. В отдельных случаях права собственности на прибор требуют уточнения:

    • Когда счетчик установлен в квартире, домовладельцы обязаны следить за техническим состоянием прибора, снимать показания и производить замену при необходимости. Все расходы при этом несут жильцы квартиры.
    • Когда электросчетчик старого образца установлен в общем коридоре, и его используют несколько квартир, прибор является общей собственностью всех владельцев. Расходы по его замене будут нести все стороны. Если это предусмотрено договором с обслуживающей компанией, сама компания меняет счетчик за счет собранных средств.

    Если нет веских причин менять счетчик электроэнергии, требования проверяющих органов по замене не законны. При этом прибор учета должен быть исправен, не просрочен.

    Тарифная система учета

    Пример показаний индукционного счетчика

    Самым существенным недостатком является невозможность использования нескольких тарифов для оплаты электроэнергии. Поэтому необходимость менять старый электросчетчик на новый зависит от того, как меняется расход энергии в течение суток. Если ночью значительный расход, есть смысл для перехода на более современный электронный прибор учета. Правда при этом следует учесть затраты на покупку и установку нового электронного счетчика.

    Снятие показаний

    Электромеханические счетчики снабжены цифровым барабаном, на котором отображается расход электроэнергии в киловаттах. Эти данные можно сдать в расчетную службу или самостоятельно производить расчеты.

    В зависимости от модели на барабанном табло появляется 5 или 7 цифр, причем последняя отделена от остальных запятой и выделена цветом. При учете не надо считать десятые и сотые доли киловатт — только целые числа. Полученный расход киловатт за месяц умножают на стоимость 1 киловатта и получают сумму, которую надо заплатить за электричество.

    Сравнение показаний электронных и индукционных счетчиков

    Старый индуктивный счетчик с алюминиевым диском

    Представляю на суд читателей очередную статью Конкурса статей. Автор статьи – Евгений Русинов.

    Статья Евгения – это исследование на тему того, как отличаются показания старых индукционных счетчиков от новых электронных. Проведено сравнение, и не в пользу электронных. Но не будем забегать вперед, слово автору.

    После установки многими знакомыми, и мною в том числе, электронных двухтарифных и однотарифных электросчетчиков взамен индукционных по требованию электроснабжающих организаций, к концу месяца ситуация менялась не в пользу потребителя. В квитанциях по уплате за электроэнергию указывались завышенные киловатт-часы, по сравнению с показаниями старого счетчика при аналогичном использовании бытовых электроприборов. Возникает вопрос, почему замена индукционного счетчика на электронный приводит к таким результатам?

    В данной статье рассмотрим случаи, при которых происходит расхождение в показаниях индукционного счетчика марки СОЭ-505 и электронного серии СОЭ-55 50Ш-Т-112, с классами точности 2 для первого и 1 для второго. Оба счетчика одного производителя – МЗЭП, Московский завод электроприборов. Фото старого индукционного счетчика – в начале статьи, новый электронный счетчик выглядит так:

    Новый электронный счетчик с ЖК-экраном

    Согласно паспортным данным, одному обороту алюминиевого диска соответствует 1,67 Вт потребленной электроэнергии, в то время как один импульс светодиодной лампы электронного счетчика сигнализирует об одном израсходованном ватте за единицу времени.

    Рекомендую ознакомиться со статьями на СамЭлектрике по устройству и установке электронных счетчиков.

    Экспериментальные данные по проверке погрешности индукционных и электронных электросчетчиков

    С учетом длины подключаемого кабеля и переходного сопротивления в местах его присоединения оба счетчика насчитали по 34 Вт. Согласно паспортным данным обогревателя потребляемая из сети мощность составляет 2 кВт в час. Из курса электротехники известно, что мощность активной нагрузки в цепях переменного тока равна произведению силы тока на напряжение. Поскольку ИК-2,0 за 60 минут теоретически потребляет 2 кВт, то поделив 2000 Вт на 60 минут получим, что за одну минуту его потребление электричества составит 33,33 Вт.

    В технических характеристиках обоих счетчиков указано, что они учитывают только активную нагрузку. Но в паспортных данных электросчетчика СОЭ-55 50Ш-Т-112 есть пункт, указывающий на то, что он ведет учет полной мощности потребляемых цепями напряжения и тока, 8 В*А и 0,04 В*А соответственно, то есть учитывают и внутреннюю реактивную мощность!

    Затем для проверки использовал активно-индуктивную нагрузку в качестве светильника ЛБ-2*40, считая ее только в качестве активной. В итоге получилось следующее: индукционный счетчик за 1,15 мин. “насчитал” 1,67 Вт, а электронный 2 Вт за такое же время, где разница составила 0,33 Вт.

    Связано это с тем, что электронный счетчик помимо активной мощности учитывает еще и реактивную мощность, которая создает дополнительную нагрузку на электрические сети, однако индуктивными счетчиками не учитывается.

    Теория. Активная и реактивная мощность

    Реактивная мощность потребляется электродвигателями, катушками индуктивности, трансформаторами, которые используются в бытовых электрических приборах, не расходуется на преобразование в механическую или тепловую энергию в их обмотках, а тратится на вихревые токи и перемагничивание в сердечниках.

    Если взять однофазный электродвигатель, то в его паспортных данных будут указаны: активная мощность, потребляемый ток, напряжение сети, коэффициент мощности или косинус фи (cosφ), коэффициент полезного действия и др., но ничего про реактивную мощность. Чтобы рассчитать потребление реактивной мощности, необходимо знать коэффициент мощности. Например, нам известна мощность однофазного электродвигателя величиной 980 Вт, номинальное напряжение 220 В и коэффициент мощности cosφ=0,85. Используя формулы из курса электротехники определим номинальный ток:

    Вычисляем реактивную мощность:

    Реактивный ток будет равен:

    Тогда полная будет равна:

    Кроме того, электронный электросчетчик не имеет в своем устройстве движущихся деталей, поэтому считать показания начинает при очень маленьком потребляемом токе нагрузки (при 0.25 мА), а также имеет меньшую погрешность измерений по сравнению с индукционным.

    Исходя из этого, рекомендуется отключать от электросети все электропотребители, находящиеся в режиме “ожидания”, т.к. это дополнительная переплата за электроэнергию.

    Индукционный счетчик «не реагирует» на индуктивную нагрузку малой мощности, а также когда эта нагрузка работает в режиме холостого хода, то есть низкая сторона силового трансформатора не нагружена.

    Кроме того, диск этого прибора учета начинает медленно вращаться в обратную сторону при подключении одного из концов катушки индуктивности. Такое возможно при использовании светильника марки ЛБ-2*40 с дросселем, когда через выключатель прерывается не фазный провод, а нулевой.

    Место установки влияет на погрешность счетчика!

    Еще одним фактором, влияющим на измерение потребляемой мощности является место установки прибора учета. Электронные электросчетчики (однофазные или трехфазные, однотарифные или двухтарифные) выносят сейчас на фасады домов или непосредственно на опоры линий электропередач, то есть на границы балансовой принадлежности, по требованию электроснабжающей организации. Нам объясняют, что это нужно для удобства списывания показаний контролерами и исключения воровства электричества.

    Однако, замалчивается тот факт, что при низких или высоких температурах обладают положительной погрешностью, иначе говоря, наматывают лишние киловатты. Индукционные счетчики предназначены для установки внутри помещений, но допускаются их устанавливать вне помещений с дополнительным подогревом.

    Исследования, проведенные к.т.н. Гурцевичем, ведущим научным сотрудником РУП «БелТЭИ» г. Минск, о погрешностях электронных электросчетчиков различных марок с классами точности 1 и 2 приведены в Таблице 1.

    Таблица 1. Пределы допускаемой дополнительной погрешности для счетчиков классов 1 и 2

    Сокращения в таблице:

    1. НВ/ТВ соответственно непосредственное и трансформаторное включение счетчика;
    2. СТК – средний температурный коэффициент, % / 1 °С;
    3. при изменении U вне указанных пределов погрешность может увеличиться в 3 раза.
    4. КМ- коэффициент мощности.

    Ток нагрузки Iн в диапазоне от 0,1 Iб (Iб – базовый ток, т.е. значение тока, являющееся исходным для установления требований к счетчику с непосредственным включением) до Iмакс (Iмакс – наибольшее значение тока, при котором счетчик удовлетворяет установленным требованиям точности) или от 0,05 Iном (Iном – значение тока, являющееся исходным для установления требований к счетчику, работающему от трансформатора) до Iмакс – установленном диапазоне измерений – при коэффициенте мощности, равном 1 (в том числе в случае многофазных счетчиков – при симметричных нагрузках), при испытании счетчика в нормальных условиях (с учетом допускаемых отклонений от номинальных значений), установленных в стандартах, определяющих частные требования.

    Таблица 2. Нормальные условия (НУ) проверки счетчика на точность

    При проверке электронного электросчетчика на точность в нормальных условиях (таблица 2), допускаются погрешности, возникающие в счетчике под влиянием величин в первом столбце.

    При изменении воздействующих величин (таблица 1), когда ток протекает через электросчетчик в обозначенных пределах с указанным коэффициентом мощности, то в счетчике возникают дополнительные погрешности, которые, суммируясь, добавляются к основным, тем самым искажая показания прибора учета как в положительную, так и отрицательную сторону.

    Индукционные счетчики электроэнергии: преимущества и недостатки, нюансы монтажа и использования

    Электросчетчик – прибор, необходимый для учета электроэнергии в быту и на производстве.

    В зависимости от принципа работы он подразделяется на индукционный и электронный. В этой статье поговорим об индукционном счетчике.

    Принцип работы

    Устройство индукционного счетчика. (Для увеличения нажмите)

    У индукционного счетчика имеется две катушки: тока и напряжения. Токовая катушка подключается последовательно, а катушка напряжения – параллельно.

    Эти две катушки образуют электромагнитный поток. У токовой катушки он пропорционален силе тока, у катушки напряжения – сетевому напряжению.

    Электромагнитное поле вращает алюминиевый диск, который с помощью зубчатой и червячной передачи соединяется со счетным механизмом и приводит его в действие. При работе счетчика наблюдается такая закономерность: «чем выше потребляемая мощность, тем быстрее вращается диск по оси».

    Установка

    Для начала нужно определиться с местом крепления прибора и приобрести необходимые инструменты.

    В магазинах продают как полные комплекты для установки счетчика, так и отдельные детали. Выбор материалов зависит от модели прибора и от особенностей подключения.

    Расположение счетчика обязательно вертикальное. Местом крепления может быть деревянный (металлический) лист или специальный защищенный короб. Прибор обязательно должен находиться в зоне свободного визуального контроля.

    Перед установкой следует изучить общую схему электропроводки. Это позволит правильно определить тип и количество автоматических выключателей, а также мощность групп потребителей.

    Однофазные

    Схема подключения однофазного счетчика. (Для увеличения нажмите)

    Однофазные счетчики работают без подключения различных трансформаторов. Потребители электроэнергии питаются от одной фазы.

    Такие счетчики устанавливают в жилых домах и небольших помещениях.

    На аппарате имеются 4 клеммы. Они соединяются с общей электросетью и подают электроэнергию в дом.

    Для установки счетчика необходимо:

      1. Закрепить прибор в подготовленном месте.
      2. К клемме № 1 подключается фазный провод.
      3. К клемме № 2 подсоединяют фазный провод от сети помещения.
    1. К клеммам № 3 и 4 подключается нулевой провод от домашней и внешней сети.
    2. При установке обязательно выполнять все строго по схеме.

    Возможно, Вас заинтересует статья об однофазных электросчетчиках Меркурий.

    Статью о том, как правильно снимать показания счетчиков электроэнергии, читайте здесь. Золотий кубок (Gold Cup) – українське казино онлайн, яке було засновано в 2014 році і наразі перебуває під юрисдикцією УНЛ. У сайту українська ліцензія, а його діяльність контролюється Міністерством Фінансів України. Інформацію щодо наявності ліцензії, офіційного підпорядкування та Правил користування можна знайти на офіційному сайті goldcup .

    Трехфазные

    Схема подключения трехфазного счетчика. (Для увеличения нажмите)

    Трехфазные счетчики считаются наиболее безопасными, так как потребители электроэнергии разделены на группы. Они предназначены для больших жилых и производственных помещений.

    Такие счетчики измеряют активную и реактивную энергии, а также направление потоков. На приборе расположено 8 клемм.

    Чтобы установить счетчик нужно:

    1. Подключить провода одинакового цвета из общей сети к клеммам № 1,3,5,7.
    2. Подсоединить провода одинакового цвета из квартирной сети к клеммам № 2,4,6,8.
    3. Соблюдать схему установки, которая учитывает подключение входных проводов с помощью четырехполюсного вводного автомата. Кроме этого на схеме изображена установка однополюсных автоматов для каждой группы потребителей.

    Тарифная система учета и снятие показаний

    Для того, чтобы снять показания, необходимо посчитать:

    1. Общий расход электроэнергии – все числа до запятой, показанные на счетном механизме прибора. Последняя цифра, выделенная красной рамкой, показывает десятые доли киловатта, поэтому ее не учитывают.
    2. Расход за месяц – разница между показаниями текущего и предыдущего месяца.
    3. Общая сумма к оплате рассчитывается так: расход за месяц нужно умножить на стоимость 1 кВт по тарифу.

    Это значит, что прибор не учитывает расход потребленной энергии в зависимости от времени суток. Поэтому оплата за электроэнергию у индукционных счетчиков будет значительно выше, чем у электронных.

    Возможно, Вам будет также интересна статья, разъясняющая Постановление 442 о замене электросчетчиков.

    Статью о том, как опломбировать счетчик электроэнергии, читайте здесь.

    Плюсы и минусы

    Достоинства:

    • надежные;
    • не зависят от перепадов электроэнергии;
    • дешевые;
    • большой срок эксплуатации;
    • можно легко остановить или отмотать счетчик при необходимости.

    Недостатки:

    • класс точности низкий (2,0 или 2,5);
    • высокая погрешность, особенно при маленьких нагрузках;
    • однотарифные;
    • нет защиты от хищения электроэнергии.

    На сегодняшний день производители индукционных счетчиков стараются улучшить свою продукцию за счет увеличения класса точности и срока службы.

    Однако из-за специфической конструкции прибора сделать это практически невозможно. Поэтому на смену индукционным счетчикам пришли электронные, которые имеют ряд преимуществ.

    Смотрите видео, в котором подробно разъясняются устройство и принцип работы индукционного счетчика электроэнергии:

    Приборы учета электроэнергии — виды и типы, основные характеристики

    Электрическая энергия передается на громадные расстояния между различными государствами, а распределяется и потребляется в самых неожиданных местах и объемах. Все эти процессы требуют автоматического учета проходящих мощностей и совершаемых ими работ. Состояние энергетической системы постоянно изменяется. Его необходимо анализировать и грамотно управлять основными техническими параметрами.

    Измерение величин текущих мощностей возложено на ваттметры, единицей измерения которых является 1 ватт, а совершенной работы за определенный промежуток времени — на счетчики, учитывающие количество ватт в течение одного часа.

    В зависимости от объема учитываемой энергии приборы работают на пределах кило-, мега-, гиго- или тера- единиц измерения. Это позволяет:

    одним главным счетчиком, расположенным на подстанции, обеспечивающей питанием крупный современный город, оценивать терабайты киловатт-часов, израсходованные на потребление всех квартир и производственных предприятий административно промышленного и жилого центра;

    большим количеством приборов, установленных внутри каждой квартиры или производства, учитывать их индивидуальное потребление.

    Ваттметры и счетчики работают за счет постоянно поступающей на них информации о состоянии векторов тока и напряжения в силовой цепи, которую предоставляют соответствующие датчики — измерительные трансформаторы в цепях переменного тока или преобразователи — постоянного.

    Принцип работы любого счетчика можно представить упрощенно поблочной схемой, состоящей из:

    входных и выходных цепей;

    Приборы учета электрической энергии подразделяются на две большие группы, работающие в сетях:

    1. переменного напряжения промышленной частоты;

    2. постоянного тока.

    Первая категория этих приборов наиболее многочисленная. С нее и начнем краткий обзор разнообразных моделей.

    Приборы учета электроэнергии переменного тока

    Этот класс счетчиков по конструктивному исполнению разделяют на три типа:

    1. индукционные, работающие с конца девятнадцатого века;

    2. электронные устройства, появившиеся не так давно;

    3. гибридные изделия, сочетающие в своей конструкции цифровые технологии с индукционной или электрической измерительной частью и механическим счетным устройством.

    Индукционные приборы учета

    Принцип работы такого счетчика основан на взаимодействии магнитных полей. создаваемых электромагнитами катушки тока, врезанной в цепь нагрузки, и катушки напряжения, подключенной параллельно к схеме питающего напряжения.

    Они создают суммарный магнитный поток, пропорциональный значению проходящей через счетчик мощности. В поле его действия расположен тонкий алюминиевый диск, установленный в подшипнике вращения. Он реагирует на величину и направление создаваемого силового поля и вращается вокруг собственной оси.

    Скорость и направление движения этого диска соответствуют значению приложенной мощности. К нему подключена кинематическая схема, состоящая из системы шестеренчатых передач и колесиков с цифровыми индикаторами, которые указывают количество совершенных оборотов, выполняя роль простого счетного механизма.

    Однофазный индукционный счетчик, особенности устройства

    Конструкция самого обычного индукционного счетчика, созданного для однофазной сети питания переменного тока, показана в разобранном виде на картинке, состоящей из двух совмещенных фотографий.

    Все основные технологические узлы обозначены указателями, а электрическая схема внутренних соединений, входных и выходных цепей приведена на следующей картинке.

    Винт напряжения, установленный под крышкой, при работе счетчика всегда должен быть закручен. Им пользуются только работники электротехнических лабораторий при выполнении специальных технологических операций — поверок прибора.

    Про устройство, принцип действия и особенности эксплуатации электрических счетчиков ранее было рассказано здесь:

    Электрические индукционные счетчики подобного типа успешно дорабатывают свой ресурс в жилых домах и квартирах людей. Их подключают в электрощитках по типовой схеме через однополюсные автоматические выключатели и пакетный переключатель.

    Особенности конструкции трехфазного индукционного счетчика

    Устройство этого измерительного прибора полностью соответствует однофазным моделям за исключением того, что в формировании суммарного магнитного потока, воздействующего на вращение алюминиевого диска, участвуют магнитные поля, создаваемые катушками токов и напряжений всех трех фаз схемы питания силовой цепи.

    Благодаря этому количество деталей внутри корпуса увеличено, а располагаются они плотнее. Алюминиевый диск к тому же сдвоен. Схема подключения катушек тока и напряжения выполняется по предыдущему варианту подключения, но с учетом обеспечения суммирования магнитных потоков от каждой отдельной.

    Этот же эффект можно достичь, если вместо одного трехфазного счетчика в каждую фазу системы включить однофазные приборы. Однако в этом случае потребуется заниматься сложением их результатов вручную. В трехфазном же индукционном счетчике эта операция автоматически выполняется одним счетным механизмом.

    Трехфазные индукционные счетчики могут выполняться двух видов для подключения:

    1. сразу к силовым цепям, мощность которых необходимо учитывать;

    2. через промежуточные измерительные трансформаторы напряжения и тока.

    Приборы первого типа используются в силовых схемах 0,4 кВ с нагрузками, которые не могут причинить своей небольшой величиной вреда прибору учета. Они работают в гаражах, небольших мастерских, частных домах и называются счетчиками прямого подключения.

    Схема коммутаций электрических цепей подобного прибора в электрощитке показана на очередной картинке.

    Все остальные индукционные приборы учета работают непосредственно через измерительные трансформаторы тока или напряжения по-отдельности, в зависимости от конкретных условий системы электроснабжения, либо с совместным их использованием.

    Внешний вид табло старого индукционного счетчика подобного типа (САЗУ-ИТ) показан на фотографии.

    Он работает во вторичных цепях с измерительными трансформаторами тока номинальной величины 5 ампер и трансформаторами напряжения— 100 вольт между фазами.

    Буква «А» в названии типа прибора «САЗУ» обозначает, что прибор создан для учета активной составляющей полной мощности. Замерами реактивной составляющей занимаются другие типы приборов, имеющие в своем составе букву «Р». Они обозначаются типом «СРЗУ-ИТ».

    Приведенный пример с обозначением трехфазных индукционных счетчиков свидетельствует о том, что их конструкция не может учитывать величину полной мощности, затраченной на совершение работы. Для определения ее значения необходимо снимать показания с приборов учета активной и реактивной энергии и производить математические вычисления по подготовленным таблицам или формулам.

    Этот процесс требует участия большого количества людей, не исключает частых ошибок, трудоемок. От его проведения избавляют новые технологии и приборы учета, работающие на полупроводниковых элементах.

    Старые счетчики индукционного типа уже практически перестали выпускаться в промышленном масштабе. Они просто дорабатывают свой ресурс в составе работающего электротехнического оборудования. На вновь монтируемых и вводимых в работу комплексах их уже не используют, а ставят новые, современные модели.

    Электронные приборы учета

    Для замены счетчиков индукционного типа сейчас выпускают много электронных приборов, предназначенных для работы в бытовой сети или в составе измерительных комплексов сложного промышленного оборудования, потребляющего громадные мощности.

    Они в своей работе постоянно анализируют состояние активной и реактивной составляющих полной мощности на основе векторных диаграмм токов и напряжений. По ним производится вычисление полной мощности, и все величины заносятся в память прибора. Из нее можно просмотреть эти данные в нужный момент времени.

    Два типа распространенных систем электронных учетов

    По типу измерения составных входных величин счетчики электронного типа выпускают:

    со встроенными измерительными трансформаторами тока и напряжения;

    с измерительными датчиками.

    Устройства со встроенными измерительными трансформаторами

    Принципиальная структурная схема электронного однофазного счетчика представлена на картинке.

    Микроконтроллер обрабатывает сигналы, поступающие от трансформаторов тока и напряжения через преобразователь и выдает соответствующие команды на:

    дисплей с отображением информации;

    электронное реле, осуществляющее коммутации внутренней схемы;

    оперативно-запоминающее устройство ОЗУ, которое имеет информационную связь с оптическим портом для передачи технических параметров по каналам связи.

    Устройства со встроенными датчиками

    Это другая конструкция электронного счетчика. Ее схема работает на основе датчиков:

    тока, состоящего из обыкновенного шунта, сквозь который протекает вся нагрузка силовой схемы;

    напряжения, работающего по принципу простого делителя.

    Приходящие от этих датчиков сигналы токов и напряжения очень малы. Поэтому их усиливают специальным устройством на основе высокоточной электронной схемы и подают на блоки амплитудно-цифрового преобразования. После них сигналы перемножаются, фильтруются и выводятся на соответствующие устройства для интегрирования, индикации, преобразований и дальнейшей передачи различным пользователям.

    Работающие по этому принципу счетчики обладают чуть меньшим классом точности, но вполне отвечают техническим нормативам и требованиям.

    Принцип использования датчиков тока и напряжения вместо измерительных трансформаторов позволяет по этому типу создавать приборы учета для цепей не только переменного, но и постоянного тока, что значительно расширяет их эксплуатационные возможности.

    На этой основе стали появляться конструкции счетчиков, которыми можно пользоваться в обоих видах систем электроснабжения постоянного и переменного тока.

    Тарифность современных приборов учета

    Благодаря возможности программирования алгоритма работы электронный счетчик может учитывать потребляемую мощность по времени суток. За счет этого создается заинтересованность населения снижать потребление электроэнергии в наиболее напряженные часы «пик» и этим разгружать нагрузку, создаваемую для энергоснабжающих организаций.

    Среди электронных приборов учета есть модели, обладающие разными возможностями тарифной системы. Наибольшими способностями обладают счетчики, позволяющие гибко перепрограммировать счетное устройство под меняющиеся тарифы электросетей с учетом времени года, праздников, различных скидок в выходные дни.

    Эксплуатация электросчетчиков по тарифной системе выгодна потребителям — экономятся деньги на оплату электроэнергии и снабжающим организациям — снижается пиковая нагрузка.

    Смотрите также по этой теме:

    Особенности конструкции промышленных приборов учета высоковольтных цепей

    В качестве примера подобного устройства рассмотрим белорусский счетчик марки Гран-Электро СС-301.

    Он обладает большим количеством полезных для пользователей функций. Как и обыкновенные бытовые приборы учета пломбируется и проходит периодическую поверку показаний.

    Внутри корпуса отсутствуют подвижные механические элементы. Вся работа основана на использовании электронных плат и микропроцессорных технологий. Обработкой входных сигналов тока занимаются измерительные трансформаторы.

    У этих устройств особое внимание уделяется надежности работы и защите безопасности информации. С целью ее сохранения вводится:

    1. двухуровневая система пломбирования внутренних плат;

    2. пятиуровневая схема организация допуска к паролям.

    Система пломбирования осуществляется в два приема:

    1. доступ внутрь корпуса этого счетчика ограничивается сразу на заводе после завершения его технических испытаний и окончания государственной поверки с оформлением протокола;

    2. доступ к подключению проводов на клеммы блокируется представителями энергонадзора или энергоснабжающей компании.

    Причем, в алгоритме работы устройства существует технологическая операция, фиксирующая в электронной памяти прибора все события, связанные со снятием и установкой крышки клеммника с точной привязкой по дате и времени.

    Схема организация допуска к паролям

    Система позволяет разграничить права пользователей прибора, отделить их по возможностям допуска к настройкам счетчика за счет создания уровней:

    нулевого, обеспечивающего снятие ограничений на просмотр данных местно либо удаленно, синхронизацию времени, корректировку показаний. Право предоставляется допущенным к работе с прибором пользователям;

    первого, позволяющего выполнять наладку оборудования на месте установки и записывать в оперативную память настройки рабочих параметров, не влияющие на характеристики коммерческого использования;

    второго, разрешающего допуск к информации прибора представителям энергонадзора после его наладки и подготовки к вводу в эксплуатацию;

    третьего, дающего право снимать и устанавливать крышку с клеммника для доступа к зажимам или оптическому порту;

    четвертого, предусматривающего возможность доступа к платам прибора для установки или замены аппаратных ключей, снятия всех пломб, выполнения работ с оптическим портом, модернизации конфигурации, калибровке поправочных коэффициентов.

    Способы подключения промышленных счетчиков на предприятиях энергетики

    Для работы приборов учета создаются разветвленные вторичные схемы измерительных цепей за счет использования высокоточных трансформаторов тока и напряжения.

    Небольшой фрагмент такой схемы для токовых цепей счетчика Гран-Электро СС-301 показан на картинке. Он взят с рабочей документации.

    Для этого же прибора учета фрагмент подключения цепей напряжения показан ниже.

    Объединение приборов учета в единую систему АСКУЭ

    Система автоматизированного контроля и учета электрической энергии стала активно развиваться благодаря возможностям электронных счетчиков и разработкам способов дистанционной передачи информации. Для подключения приборов учета индукционной системы разработаны специальные датчики.

    Основной задачей системы АСКУЭ является быстрый сбор информации в едином центре управления. При этом на него поступают потоки данных со всех потребителей действующих подстанций. Они содержат сведения по вопросам потребленной и отпущенной мощности с возможностью анализов способов ее выработки и распределения, расчета стоимости и учета экономических показателей.

    Для решения организационных вопросов системы АСКУЭ обеспечивается:

    установка высокоточных приборов учета в местах учета электроэнергии;

    передача информации от них выполняется цифровыми сигналами с помощью «сумматоров», имеющих оперативную память;

    организация системы связи по проводным и радиоканалам;

    осуществление схемы обработки получаемой информации.

    Приборы учета электроэнергии постоянного тока

    Модели счетчиков этого класса фиксируют энергию в разных технологических режимах, но чаще всего они применяются на оборудовании электроподвижного состава городского транспорта и на железных дорогах.

    Они созданы на основе электродинамической системы.

    Основной принцип работы подобных счетчиков состоит во взаимодействии сил магнитных потоков, образованных двумя катушками:

    1. первая закреплена стационарно;

    2. вторая имеет возможность вращения под действием сил магнитного потока, величина которого пропорционально зависит от значения тока, протекающего по цепи.

    Параметры вращения катушки передаются на счетный механизм и учитываются расходом электрической энергии.

    Классификация и технические характеристики индукционных счетчиков

    Различают однофазные и трехфазные счетчики. Однофазные счетчики применяются для учета электроэнергии у потребителей, питание которых осуществляется однофазным током (в основном, бытовых). Для учета электроэнергии трехфазного тока применяются трех фазные счетчики.

    Трехфазные счетчики можно классифицировать следующим образом.

    По роду измеряемой энергии — на счетчики активной и реактивной энергии.

    В зависимости от схемы электроснабжения, для которой они предназначены ,— на трехпроводные счетчики, работающие в сети без нулевого провода, и четырехпроводные, работающие в сети с нулевым проводом.

    По способу включения счетчики можно разделить на 3 группы

    – Счетчики непосредственного включения (прямого включения) , включаются в сеть без измерительных трансформаторов. Такие счетчики выпускаются для сетей 0,4/0,23 кВ на токи до 100 А.

    – Счетчики полукосвенного включения , своими токовыми обмотками включаются через трансформаторы тока. Обмотки напряжения включаются непосредственно в сеть. Область применения – сети до 1 кВ.

    С четчики косвенного включения , включаются в сеть через трансформаторы тока и трансформаторы напряжения. Область применения – сети выше 1 кВ.

    Счетчики косвенного включения изготовляются двух типов. Трансформаторные счетчики — предназначены для включения через измерительные трансформаторы, имеющие определенные наперед заданные коэффициенты трансформации. Эти счетчики имеют десятичный пересчетный коэффициент (10п). Трансформаторные универсальные счетчики — предназначены для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для универсальных счетчиков пересчетный коэффициент определяется по коэффициентам трансформации установленных измерительных трансформаторов.

    В зависимости от назначения счетчику присваивается условное обозначение. В обозначениях счетчиков буквы и цифры означают: С – счетчик; О – однофазный; Л – активной энергии; Р – реактивной энергии; У – универсальный; 3 или 4 для трех- или четырехпрводной сети.

    Пример обозначения: СА4У – Трехфазный трансформаторный универсальный четырехпроводный счетчик активной энергии.

    Если на табличке счетчика поставлена буква М, это значит, что счетчик предназначен для работы и при отрицательных температурах (-15° – +25°С).

    Электросчетчики специального назначения

    Счетчики активной и реактивной энергии, снабженные дополнительными устройствами, относятся к счетчикам специального назначения. Перечислим некоторые из них.

    Двухтарифные и многоторифные счетчики — применяются для учета электроэнергии, тариф на которую изменяется в зависимости от времени суток.

    Счетчики с предварительной оплатой — применяются для учета электроэнергии бытовых потребителей, живущих в отдаленных и труднодоступных населенных пунктах.

    Счетчики с указателем максимальной нагрузки — применяются для расчетов с потребителями по двухставочному тарифу (за израсходованную электроэнергию и максимальную нагрузку).

    Телеизмерительные счетчики — служат для учета электроэнергии и дистанционной передачи показаний.

    К счетчикам специального назначения относятся и образцовые счетчики , предназначенные для поверки счетчиков общего назначения.

    Технические характеристики электросчетчиков

    Техническая характеристика счетчика определяется следующими основными параметрами.

    Номинальное напряжение и номинальный ток счетчиков — у трехфазных счетчиков указываются в виде произведения числа фаз на номинальные значения тока и напряжения, у четырехпроводных счетчиков указываются линейные и фазные напряжения. Например- 3/5 А; 3X380/220 В.

    У трансформаторных счетчиков вместо номинальных тока и напряжения указываются номинальные коэффициенты трансформации измерительных трансформаторов, для работы с которыми счетчик предназначен, например: 3X150/5 А. 3X6000/100 В.

    На счетчиках, называемых перегрузочными, указывается значение максимального тока непосредственно после номинального, например 5 – 20 А.

    Номинальное напряжение счетчиков прямого и полукосвенного включения должно соответствовать номинальному напряжению сети, а счетчиков косвенного включения — вторичному номинальному напряжению трансформаторов напряжения. Точно так же номинальный ток счетчика косвенного или полукосвенного включения должен соответствовать вторичному номинальному току трансформатора тока (5 или 1 А).

    Счетчики допускают длительную перегрузку по току без нарушения правильности учета: трансформаторные и трансформаторные универсальные – 120%; счетчики прямого включения — 200% и более (в зависимости от типа)

    Класс точности счетчика — это его наибольшая допустимая относительная погрешность, выраженная в процентах. Счетчики активной энергии должны изготавливаться классов точности 0,5; 1,0; 2,0; 2,5; счетчики реактивной энергии – классов точности 1,5; 2,0; 3,0. Трансформаторные и трансформаторные универсальные счетчики учета активной и реактивной энергии должны быть класса точности 2,0 и более точные.

    Класс точности устанавливается для условий работы, называемых нормальными. К ним относятся: прямое чередование фаз; равномерность и симметричность нагрузок по фазам; синусоидальность тока и напряжения (коэффициент линейных искажений не более 5%); номинальная частота (50 Гц±0,5%); номинальное напряжение (±1%); номинальная нагрузка; cos фи = l (для счетчиков активной энергии) и sin фи = 1 (для счетчиков реактивной энергии); температура окружающего воздуха 20°+3°С (для счетчиков внутренней установки); отсутствие внешних магнитных полей (индукция не более 0,5 мТл); вертикальное положение счетчика.

    Передаточное число индукционного счетчика – это число оборотов его диска, соответствующее единице измеряемой энергии.

    Например, 1 кВт-ч равен 450 оборотам диска. Передаточное число указывается на табличке счетчика.

    Постоянная индукционного счетчика — это значение энергии, которое он измеряет за 1 оборот диска.

    Чувствительность индукционного счетчика — определяется наименьшим значением тока (в процентах к номинальному) при номинальном напряжении и cos фи = l (sin фи = 1), который вызывает вращение диска без остановки. При этом допускается одновременное перемещение не более двух роликов счетного механизма.

    Порог чувствительности не должен превышать: 0,4% – для счетчиков класса точности 0,5; 0,5%—для счетчиков классов точности 1,0; 1,5; 2 и 1,0% – для счетчиков класса точности 2,5 и 3,0

    Емкость счетного механизма — определяется числом часов работы счетчика при номинальных напряжении и токе, по истечении которых счетчик дает первоначальные показания.

    Собственное потребление мощности (активной и полной) обмотками счетчиков — ограничено стандартом. Так, для трансформаторных и трансформаторных универсальных счетчиков потребляемая мощность в каждой токовой цепи при номинальном токе не должна превышать 2,5 В-А для всех классов точности, кроме 0,5. Мощность, потребляемая одной обмоткой напряжения счетчиков до 250 В: для классов точности 0,5; 1;1,5 — активная 3 Вт, полная 12 В-А, для классов точности 2,0; 2,5; 3,0 — соответственно 2 Вт и 8 В-А.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: