Компаратор напряжения: как работает и примеры схем

Компаратор принцип работы

Компаратор – это устройство, предназначенное для сравнения каких-либо величин (от лат. comparare – “сравнивать”). Является операционным усилителем с большим коэффициентом умножения. Имеет входы: прямой и инверсный. При необходимости опорный сигнал может быть подключен к любому из них.

Как работает компаратор?

На один из входов подается постоянный сигнал, который называется опорным. Он используется как образец для сравнения. Ко второму поступает испытуемый сигнал. На выходе стоит транзистор, меняющий свое состояние в зависимости от условий:

  • Напряжение прямого входа выше инверсного – транзистор открыт.
  • Напряжение инверсного входа выше прямого – закрыт.

Соответственно, выходное напряжение меняется скачком от минимума до максимума, или наоборот.

Применение компаратора

Используются в схемах измерения электрических сигналов и в аналогово-цифровых преобразователях. В логических цепях работают элементы «или» и «не», также являющиеся компараторами. Соответственно, использование этого компонента не ограничивается конкретными примерами, поскольку он применяется повсеместно.

Стоит отметить, что устройство сравнения можно сделать из любого операционного усилителя, но не наоборот. Коэффициент усиления компаратора достаточно высок. Соответственно, его входы очень чувствительны к разнице напряжений между ними. Расхождение в несколько милливольт значительно изменяет напряжение выхода.

Таким образом, компаратор позволяет наблюдать минимальные колебания уровней входных напряжений. Это делает его незаменимым элементом схем сравнения и измерительных приборов высокой точности:

  • индикаторы уровня входящего сигнала;
  • металлоискатели;
  • микро- и милливольтметры;
  • детекторы электромагнитных излучений;
  • лабораторные датчики;
  • компараторы массы;
  • газоанализаторы.

Принцип действия аналогового компаратора

Аналоговый компаратор сравнивает непрерывные сигналы – входной измеряемый и входной опорный. При медленном изменении входного сигнала, происходит многократное переключение компаратора за малый отрезок времени. Такое явление называют «электронным дребезгом». Его наличие значительно снижает эффективность сравнения. Поскольку часто повторяющиеся смены состояния выхода, вводят оконечный транзистор в состояние насыщения.

Для уменьшения эффекта «электронного дребезга», в схему вводят ПОС – положительную обратную связь. Она обеспечивает гистерезис – небольшую разницу между уровнем напряжения включения и отключения. Некоторые компараторы имеют встроенную ПОС, что уменьшает количество дополнительных элементов построения конструкции.

Особенности цифрового компаратора

Цифровой компаратор – это однобитный аналогово-цифровой преобразователь. Напряжение выхода представляет либо логический «0», либо «1». На вход может быть подан как аналоговый, так и цифровой сигнал. Устройство используется в качестве формирователя импульсов для сопряжения схем датчиков и устройств отображения. Может применяться для анализа спектра звукового или светового сигнала. Компаратор – это также логические элементы «или» и «не», используемые в вычислительной технике.

Теоретически при незначительно малых колебаниях уровня входного сигнала, может возникать состояние неопределенности выхода. На практике равенство измеряемого и опорного напряжений не наступает. Поскольку компаратор имеет ограниченный коэффициент усиления или положительную обратную связь.

Компаратор-микросхема

Промышленность выпускает компараторы в виде интегральных схем. Их использование позволяет создавать компактные приборы, с минимумом навесных элементов. Также преимущество малогабаритных деталей в незначительной длине соединительных проводников. В условиях повышенного электромагнитного излучения они являются приемными антеннами для всевозможных электрических помех.

Компаратор на операционном усилителе

У компараторов есть немалое сходство с операционными усилителями:

  • коэффициент усиления;
  • входное сопротивление;
  • значение входных токов;
  • состояние насыщения.

Пример практического применения компаратора

На принципиальной схеме представлен датчик освещенности.

Опорное напряжение задается резисторами RV1 и R2. При этом, RV1 служит регулятором чувствительности конструкции. Индикация реализована на светодиоде D1. Датчиком является элемент LDR1, который меняет омическое сопротивление в зависимости от освещенности. Собственно компаратор представлен операционным усилителем LM324. Это простое устройство демонстрирует то, как работает компаратор на практике.

Компараторы массы: понятие

Компаратор массы это устройство, предназначенное для уточнения разности значений массы гирь при контроле стандартов массы и веса, а также, для прецизионного взвешивания. Наиболее точные компараторы массы способны взвесить любой образец и сравнить его с иным, подобным ему. Происходит это на уровне атомов. Необходимость в таких устройствах возникает по причине несовершенства эталонных образцов мер веса и объема жидкости.

Типы компараторов

– компаратор для сравнения разнополярных сигналов;

– компаратор для сравнения однополярных сигналов.

Схемы на компараторах

Как работает компаратор напряжения

Во многих описаниях компаратор сравнивается с обычными рычажными весами, как на базаре: на одну чашу кладется эталон – гири, а на другую продавец начинает подкладывать товар, например, картошку. Как только вес товара становится равным весу гирь, точнее чуть больше, чашка с гирями устремляется вверх. Взвешивание закончено.

То же самое происходит и с компаратором, только в этом случае роль гирь выполняет опорное напряжение, а в качестве картошки используется входной сигнал. Как только на выходе компаратора появляется логическая единица, то считается, что сравнение напряжений произошло. Вот это и есть то самое «чуть больше», которое в справочниках называется «пороговая чувствительность компаратора».

Проверка компаратора напряжения

Начинающие радиолюбители – электронщики часто спрашивают, как проверить ту или иную деталь. Для проверки компаратора какой-то сложной схемы собирать не надо. Достаточно на выход компаратора подключить вольтметр, а на входы подать регулируемые напряжения, и определить, работает компаратор или нет. И уж, конечно, будет совсем хорошо, если еще не забыть подать на компаратор напряжение питания!

Однако, при этом не следует забывать, что многие компараторы имеют выходной транзистор, у которого выводы коллектора и эммитера просто «висят в воздухе», о чем было рассказано в статье «Аналоговые компараторы». Поэтому, эти выводы надо соответствующим образом подключить. Как это сделать показано на рисунке 1.

Рисунок 1. Схема подключения компаратора

На инверсный вход компаратора подано опорное напряжение, полученное с делителя R2, R3 из напряжения питания +5В. В результате на инверсном входе получается 2,5В. Предположим, что движок переменного резистора R1 находится в нижнем по схеме положении, т.е. напряжение на нем 0В. Такое же напряжение и на прямом входе компаратора.

Если теперь вращением движка переменного резистора R1 постепенно увеличивать напряжение на прямом входе компаратора, то при достижении 2,5В на выходе компаратора появится логическая 1, которая откроет выходной транзистор, зажжется светодиод HL1.

Если теперь движок R1 вращать в сторону уменьшения напряжения, то в определенный момент светодиод HL1, несомненно, погаснет. Это говорит об исправной работе компаратора.

Эксперимент можно несколько усложнить: измерить вольтметром напряжение на прямом входе компаратора, и зафиксировать при каком напряжении светодиод засветится, а при каком погаснет. Разница этих напряжений и будет гистерезисом компаратора. Кстати, некоторые компараторы имеют специальный вывод (pin) для регулировки величины гистерезиса.

Для проведения такого опыта понадобится цифровой вольтметр, способный «поймать» милливольты, многооборотный подстроечный резистор и изрядное терпение исполнителя. Если терпения для проведения такого эксперимента недостаточно, можно проделать следующий, куда более простой: поменять местами прямой и инверсный входы, и, вращая переменный резистор, понаблюдать, как ведет себя светодиод, т.е. выход компаратора.

На рисунке 1 показана просто структурная схема, поэтому номера выводов не указаны. При проверке реального компаратора придется разобраться с его цоколевкой (распиновкой). Далее будут рассмотрены некоторые практические схемы и приведено краткое описание их работы.

Часто в одном корпусе располагается несколько компараторов, два или четыре, что позволяет создавать различные устройства, не устанавливая на плате лишних микросхем. Компараторы могут быть независимы друг от друга, но в некоторых случаях имеют внутренние соединения. В качестве такой микросхемы рассмотрим сдвоенный компаратор MAX933.

Компаратор MAX933

В одном корпусе микросхемы «проживают» сразу два компаратора. Кроме собственно компараторов внутри микросхемы имеется встроенный источник опорного напряжения 1.182V. На рисунке он показан в виде стабилитрона, который уже подключен внутри микросхемы: к верхнему компаратору на инверсный вход, а к нижнему на прямой. Это позволяет легко создать многоуровневый компаратор по принципу «Мало», «Норма», «Много» (undervoltage/overvoltage detectors). Такие компараторы называются оконными, поскольку положение «норма» находится в «окне» между «мало» и «много».

Исследование компаратора программой Multisim

На рисунке 2 показано измерение опорного напряжения, произведенного с помощью программы – симулятора Multisim. Измерение проводится мультиметром XMM2, который показывает 1.182V, что полностью соответствует значению, указанному в Data Sheet компаратора. Вывод 5 HYST,- регулировка гистерезиса, в данном случае не используется.

С помощью переключателя S1 можно задавать уровень входного напряжения, причем, сразу на обоих компараторах: замкнутый переключатель подает на входы низкий уровень (меньше, чем опорное напряжение) как показано на рисунке 3, разомкнутому состоянию соответствует высокий уровень, – рисунок 4. Состояние выходов компараторов показываются мультиметрами XMM1, XMM2.

Комментарии к рисункам совсем излишни, – чтобы понять логику работы компараторов достаточно внимательно рассмотреть показания мультиметров и положение переключателя S1. Следует только добавить, что такую схему можно рекомендовать для проверки реального «железного» компаратора.

Схема проверки напряжения

Схема такого компаратора, показанного в Data Sheet, приведена на рисунке 5.

Для выходных сигналов пониженного напряжения (OUTA) и перенапряжения (OUTB) активным уровнем сигнала является низкий, о чем говорит подчеркивание сигналов сверху. Иногда для этих целей используется знак « – » или « / » перед названием сигнала. Эти сигналы можно назвать аварийными.

Сигнал POWER GOOD получается на выходе логического элемента И, когда оба сигнала аварии имеют уровень логической единицы. Активным уровнем сигнала POWER GOOD является высокий уровень.

Если хотя бы один из аварийных сигналов имеет низкий уровень, то сигнал POWER GOOD исчезнет,- станет тоже низким. Это лишний раз дает возможность убедиться, что логическая схема И для низких уровней является логическим ИЛИ.

Рисунок 5. Схема компаратора

Контролируемое входное напряжение подается через делитель R1…R3, величина резисторов которого рассчитывается с учетом диапазона контролируемых напряжений. Методика расчета приведена, даже с примером, в Data Sheet.

Для уменьшения дребезга во время переключения величина гистерезиса задается с помощью делителя R4, R5. Эти резисторы рассчитываются по формулам, также приведенным в Data Sheet. Для указанных на схеме значений, величина гистерезиса составляет 50mV.

Схема управления резервным питанием

Подобные схемы применяются, например, в системах сигнализации. Алгоритм работы этих схем достаточно прост. При пропадании сетевого напряжения охранная система переключается на работу от аккумуляторов, а при восстановлении сети вновь работает от блока питания, при этом осуществляется зарядка аккумуляторной батареи. Для осуществления такого алгоритма надо оценить, как минимум два фактора: наличие сетевого напряжения и состояние аккумулятора.

Функциональная схема управления показана на рисунке 6.

Рисунок 6. Схема управления резервным питанием на одной микросхеме

Выпрямленное напряжение +9VDC через диод подается на стабилизатор напряжения, от которого питается охранное устройство. Делитель R1, R2 является в данном случае датчиком сетевого напряжения, за которым следит нижний по рисунку компаратор с выходом OUTA. Когда сетевое напряжение есть, и находится в пределах разумного, на выходе нижнего компаратора логическая единица, которая открывает полевой транзистор Q1, через который заряжается аккумулятор. Этот же сигнал управляет индикатором работы от сети.

В случае пропадания или понижения сетевого напряжения, на выходе компаратора появляется логический ноль, полевой транзистор закрывается, прекращается заряд аккумулятора, индикатор работы от сети гаснет или приобретает другой цвет. Возможно также еще и появление звукового сигнала.

Заряженный аккумулятор через коммутирующий диод подключается к стабилизатору, и работа устройства продолжается в автономном режиме. Но чтобы уберечь аккумулятор от полного разряда, за его состоянием следит другой компаратор,- верхний по схеме.

Пока аккумулятор еще не разряжен напряжение на инверсном входе компаратора B выше опорного, поэтому на выходе компаратора низкий уровень, что соответствует нормальному заряду батарей. По мере разряда напряжение на делителе R3, R4 падает, и когда станет ниже опорного, на выходе компаратора установится высокий уровень, что укажет на разряд аккумулятора. Чаще всего такое состояние индицируется назойливым писком прибора.

Схема выдержки времени

Показана на рисунке 7.

Рисунок 7. Схема выдержки времени на компараторе

Работает схема следующим образом. При нажатии на кнопку MOMENTARY SWITCH конденсатор C заряжается до напряжения источника питания. Это приводит к тому, что напряжение на входе IN+ становится выше, чем опорное напряжение на входе IN-. Поэтому на выходе OUT устанавливается высокий уровень.

После отпускания кнопки конденсатор начинает разряжаться через резистор R , и когда напряжение на нем, а, следовательно, на входе IN+ упадет ниже опорного напряжения на входе IN-, на выходе компаратора OUT установится низкий уровень. При повторном нажатии на кнопку все повторяется еще раз.

Опорное напряжение на входе IN- устанавливается с помощью делителя из трех резисторов и при указанных на схеме номиналах составляет 100мВ. Этим же делителем устанавливается и гистерезис компаратора (HYST) в пределах 50мВ. Таким образом, конденсатор C разряжается до напряжения 100 – 50 = 50 мВ.

Ток потребления самого устройства невелик, не более 35 микроампер, в то время, как выходной ток может достигать 40 мА.

Выдержка времени рассчитывается по формуле R * C * 4.6 сек. В качестве примера можно привести расчет с такими данными: 2MΩ * 10µF * 4.6 = 92 сек. Если сопротивление указано в мегаомах, емкость в микрофарадах, то результат получается в секундах. Но это только расчетный результат. Фактическое время будет зависеть от напряжения источника питания и от качества конденсатора, от его тока утечки.

Несколько простых схем на компараторах

Основой схем, которые будут рассмотрены далее, является градиентное реле, – схема, реагирующая не на присутствие какого-либо сигнала, а на скорость его изменения. Одним из таких датчиков является фотореле, схема которого показана на рисунке 8.

Рисунок 8. Схема фотореле на компараторе

Входной сигнал получается с делителя, образованного резистором R1 и фотодиодом VD3. Общая точка этого делителя через диоды VD1 и VD2 подключена к прямому и инвертирующему входу компаратора DA1. Таким образом, получается, что на прямом и инверсном входе одно и то же напряжение, т.е. разницы между напряжениями на входах нет. При таком состоянии на входах чувствительность компаратора близка к максимальной.

Чтобы изменить состояние компаратора потребуется разница напряжений на входах в единицы милливольт. Это примерно, как столкнуть мизинцем в пропасть, висящий на краю камень. А пока на выходе компаратора присутствует логический ноль.

Если вдруг изменилась освещенность, напряжение на фотодиоде тоже изменилось, предположим, что в сторону увеличения. Казалось бы, что вместе с этим изменится и напряжение на обоих входах компаратора, причем сразу. Поэтому, желаемой разницы напряжений на входах не получится, а, следовательно, и не изменится состояние выхода компаратора.

Все бы это было так, если не обращать внимания на конденсатор C1 и резистор R3. Благодаря этой RC цепочке, напряжение на инверсном входе компаратора возрастет с некоторой задержкой относительно прямого входа. На время задержки напряжение на прямом входе будет больше, чем на инверсном. В результате на выходе компаратора появится логическая единица. Эта единица будет удерживаться недолго, как раз на время задержки, обусловленной RC цепочкой.

Подобное фотореле используется в тех случаях, когда освещенность меняется достаточно быстро. Например, в охранных устройствах или датчиках готовой продукции на конвейерах, – устройство будет реагировать на прерывание светового потока. Еще один вариант, – это как дополнение к системе видеонаблюдения. Если направить фотодатчик на экран монитора, то он будет фиксировать изменение яркости и включать, например, звуковой сигнал, привлекая внимание оператора.

Рассмотренное фотореле очень просто превратить в датчик изменения температуры, например в пожарной сигнализации. Для этого достаточно заменить фотодиод на терморезистор. При этом номинал резистора R1 должен быть равен номиналу терморезистора (обычно указывается для температуры 25C°). Схема этого датчика показана на рисунке 9.

Рисунок 9. Схема датчика измерения температуры на компараторе

Принцип и смысл работы совершенно такой же, как у описанного выше фотодатчика. Но в этой конструкции показано и простейшее выходное устройство, – это тиристор VS1 и реле K1. При срабатывании компаратора открывается тиристор VS1, которое включает реле K1.

Поскольку тиристор в данном случае работает в цепи постоянного тока, то даже при окончании управляющего импульса от компаратора тиристор останется открытым, а реле K1 включенным. Для отключения реле придется нажать кнопку SB1 либо просто обесточить всю схему.

Вместо терморезистора можно применить магниторезистор, например СМ-1, реагирующий, на магнитное поле. Тогда получится магниточувствительное градиентное реле. Магниторезисторы в прошлом XX веке применялись в клавиатурах некоторых ЭВМ.

Если применить другие датчики, то на базе градиентного реле можно легко изготовить совсем другие устройства, реагирующие на изменение электрического поля, на звуковые колебания. С помощью пьезодатчиков легко создать датчики удара, и сейсмических колебаний.

Достаточно просто с помощью компараторов получается преобразование «аналогового» сигнала в «цифровой». Подобная схема показана на рисунке 10.

Рисунок 10. Схема преобразования «аналогового» сигнала в «цифровой» с использованием компаратора

На рисунке 11 показана такая же схема, только полярность выходных импульсов у нее обратная по отношению к предыдущей. Это достигается просто другим включением входов.

Обе схемы преобразуют амплитуду входного сигнала в ширину выходного импульса. Такое преобразование достаточно часто используется в различных электронных схемах. Прежде всего, в измерительных приборах, импульсных блоках питания, цифровых усилителях.

Частотный диапазон устройств находится в пределе 5…200КГц, амплитуда входного сигнала в диапазоне 2…2,5В. При использовании германиевого диода преобразование амплитуды в ширину импульса начинается с уровня 80…90мВ, в то время как для кремниевого диода это значение составляет 250…270мВ.

Рабочая полоса частот устройства определяется номиналами конденсаторов C1, C2. Собранное из исправных деталей устройство не требует наладки и установки порога срабатывания.

Компаратор напряжения: как работает и примеры схем

В электронных приборах часто можно встретить различные интегральные микросхемы. Одной из них является компаратор. Его применение очень обширно: начиная от сигнализационных датчиков и заканчивая промышленной и автомобильной электроникой. Зная, как работает компаратор, можно самостоятельно собрать различные интересные схемы, например, зарядное устройство, индикаторный узел или даже генератор.

  • Описание и схемотехника
    • Характеристики прибора
    • Устройство и принцип работы
  • Простые конструкции
    • Фотореле контроля
    • Зарядный блок
    • Кварцевый генератор

Описание и схемотехника

Несмотря на кажущуюся простоту, компаратор — куда более интересное устройство, чем может показаться на первый взгляд. В электронике им называют логическую микросхему, предназначенную для сравнения между собой двух электрических сигналов, подающихся на его вход. В зависимости от результатов этого измерения изменяется режим работы прибора.

Термин «компаратор» произошёл от латинского слова «comparare», что дословно переводится на русский язык как сравнивать. Конструктивно устройство может выпускаться в различных корпусах, например, DIP, SOIC, SSOP. Простейшего вида сравнивающий элемент имеет два аналоговых входа и один цифровой выход. В основе его работы лежит дифференциальный каскад, имеющий высокий коэффициент усиления. Поэтому компараторы широко используются в оборудовании, предназначенном для измерения или преобразования аналогового сигнала в цифровой (АЦП).

На схемах и в технической литературе графически устройство обозначается в виде равнобедренного треугольника с тремя выводами. С одной стороны выводы подписываются знаками «+» и «», соответственно обозначающими неинвертирующий вход и инвертирующий, а с другой — изображается выход, который маркируется символом Uout.

Когда на прямом входе («+») микросхемы уровень сигнала будет больше, чем на инверсном («»), то на её выходе образуется устойчивое значение. В зависимости от схемотехнического решения компаратора это значение может принимать вид логического ноля или единицы. В цифровой электронике за единицу считается сигнал, уровень напряжения которого составляет пять вольт, а за ноль принимается его отсутствие. То есть состояние выхода устройства определяется как высокое или низкое. Но на практике же за логический ноль принимается значение разности потенциалов до 2,7 В.

Один из входных сигналов, подаваемых на прибор, называется опорным или пороговым напряжением. Именно с этим значением и сравнивается величина сигнала на втором входе. Опорное напряжение может подаваться как на инверсный, так и прямой вход. В зависимости от этого компараторы называются инвертирующими или неинвертирующими. Когда прибор работает с одним опорным напряжением, его называют однопороговым, а если с разным — многовходовым.

Характеристики прибора

По сути, устройство можно рассматривать как простой вольтметр или АЦП. Компаратор, как и любой электронный прибор, имеет ряд технических характеристик, которые можно разделить на два вида: статические и динамические.

К статическим параметрам относятся следующие характеристики:

  1. Предельная чувствительность обозначает пороговые величины сигнала, которые прибор идентифицирует на входе и изменяет потенциал своего выхода на логический ноль или единицу.
  2. Величина смещения определяется передаточным моментом устройства относительно идеального положения.
  3. Входной ток — максимальное его значение, которое может пройти через любой вывод, не повредив устройства.
  4. Выходной ток — значение тока, появляющееся на выходе при переходе устройства в состояние единицы.
  5. Разность токов — это величина, находимая при вычитании значений токов, протекающих при закороченных входах.
  6. Гистерезис — разность уровней входного сигнала, приводящая к изменению устойчивого состояния на выходе.
  7. Коэффициент снижения синфазного сигнала определяется отношением синфазного и дифференциального сигнала, приводящим к переключению режима работы компаратора.
  8. Входной импеданс — полное сопротивление входа.
  9. Минимальная и максимальная рабочая температура — диапазон, в котором технические параметры устройства не изменяются.

Важной же динамической характеристикой является время переключения tn. Она определяется интервалом времени от начала сравнения входного сигнала до момента, при котором на выходе компаратора наступает противоположное устойчивое состояние. Это время определяется при одном значении порогового напряжения и его скачке на противоположном входе. Этот интервал времени разделяется на две части — задержки и нарастания.

Все значимые параметры компаратора представляются в виде переходной характеристики. Это график в декартовой плоской системе координат, в которой по оси Х указывается время в наносекундах, а Y — входное и выходное напряжение в вольтах.

Устройство и принцип работы

Схемотехника устройства построена на базе дифференциального операционника с довольно большим коэффициентом усиления. Её различия с простым линейным усилителем заключаются в выполнении входного и выходного каскада.

Вход устройства выдерживает сигнал в широком диапазоне до значений источника питания и полный интервал синфазных напряжений. Выход компаратора совместим с технологиями ТТЛ и ЭСЛ из-за возможности выполнения этого каскада на транзисторе с открытым коллектором. При работе устройства не используется отрицательная обратная связь как в операционном усилителе, а, наоборот, выход охватывается положительной связью, формирующей гистерезисную передаточную характеристику.

Двухпороговый компаратор называется триггером Шмита или троичным. Для сравнения в нём используется два напряжения. Сигналы в двоичном компараторе разделяются на три диапазона:

  1. Urf2 > Urf1;
  2. Uout1 = 0 при Uin Uref1;
  3. Uout2 = 0 при Uin Uref2.

Uref — напряжение нижнего и верхнего порогов переключения, Uout — уровень выходного сигнала, Uin — напряжение на входе прибора.

Внутренняя схема устройства представляет собой усилитель, собранный на транзисторах VT1-VT2, который нагружен каскадом VT5-VT6, включённым по схеме с общим эмиттером. Через дополнительный ключ VT4 происходит управление коллекторным режимом работы входного сигнала. А через транзистор VT7, работающий в диодном режиме, контролируется уровень сигнала на VT8, что позволяет добиваться его независимости от изменений напряжения питания. Ключи VT5 и VT6 соединяются со стабилитроном VD1. Поэтому через повторитель VT8 входной сигнал поступает на выход с коллекторного вывода VT6.

Если входной сигнал не превышает один вольт, то транзистор VT6 закрыт, а VT5 находится в режиме насыщения. Выходной сигнал не сможет превысить четырёх вольт, так как при большей величине откроется диод. При обратном знаке VT6 насытится, и напряжение на выходе станет равным нулю. В современных устройствах используется стробирующий выход или триггеры-защелки, то есть элементы, контролирующие выход компаратора при обнаружении синхроимпульса. Результаты сравнения могут появляться в двух видах: во время строба или в паузах между импульсами.

Простые конструкции

На практике компараторы напряжения нашли широкое применение в радиоэлектронных схемах различного направления. В радиомагазинах можно встретить довольно большое количество различных микросхем. Но наиболее часто используемыми микросхемами среди радиолюбителей являются:

  • LM311;
  • К554СА3;
  • LM339;
  • MAX934.

Они доступны в продаже, а их стоимость более чем демократична. Такие компараторы отличаются широким диапазоном входного напряжения и могут работать при однополярном и двуполярном питании.

К выходу устройства может подключаться любая нагрузка с током потребления, обычно не превышающим 50 мА. Это может быть реле, резистор, светодиод, оптрон или любые исполнительные устройства, но с ограничивающими ток элементами. А также возможно подключить и индуктивную нагрузку, но она обычно в этом случае шунтируется диодами. Для работы устройства применяются источники питания с выходным напряжение 5−36 вольт.

Фотореле контроля

Такое реле собирается навесным монтажом. Его можно использовать в охранной системе или для контроля уровня освещённости. Работа схемы заключается в следующем. Входное напряжение поступает на делитель, состоящий из R1 и фотодиода VD3. Их общая точка соединения через ограничительные диоды VD1 и VD2 подключается к входам компаратора DA1. В результате этого разница потенциалов на входе устройства отсутствует, а значит, и чувствительность прибора максимальная.

Для того чтобы сигнал на выходе инвертировался, понадобится создать разницу на входе всего в один милливольт. Из-за того, что к инверсному входу подключён конденсатор С1 и резистор R1, величина напряжения на нём будет возрастать с небольшой задержкой, равной времени заряда конденсатора.

Но этого времени хватит, чтобы на выходе появилась логическая единица, которая перестроит режим работы реле подключённого в качестве нагрузки. Как только освещение опять поменяется, ситуация повторится. Таким образом, направив фотореле на какое-то место, в случае изменения его освещённости на входах компаратора появится разность напряжения. Соответственно будет изменяться и работа реле, к которому может подключаться различного рода нагрузка.

Зарядный блок

Выполненный блок питания из исправных элементов начинает работать сразу. Его настройки сводятся лишь к установке номинального тока заряда и порогов срабатывания компаратора. При включении устройства загорается зелёный светодиод, обозначающий подачу питания. Во время зарядки должен же постоянно светиться красный светодиод, который потухнет, как только аккумулятор зарядится.

Подаваемое напряжение от блока питания регулируется R2, а ток зарядки выставляется R4. Настройка происходит с помощью резистора на 150 Ом, включающегося параллельно контактам держателя батарейки. Сам аккумулятор в него не ставится. Транзистор VT1 устанавливается на радиатор, вместо него можно использовать аналог КТ814Б.

Такую схему придётся собирать на печатной плате, но в итоге её размер не должен превысить 50 х 50 мм.

Можно собрать схему попроще, используя принцип работы стабилизатора тока. Подача опорного напряжения на вход LM358 происходит через стабилитрон. Второй вход микросхемы подключается после датчика тока. Если к выходу компаратора подключить разряженный аккумулятор, то в цепи начнёт возрастать ток, а часть напряжения упадёт на низкоомном резисторе.

Между двумя входами микросхемы возникнет разность напряжения. Схема начнёт компенсировать это различие, увеличивая силу тока на выходе. В процессе заряда аккумулятора напряжение на входе начнёт уменьшаться, что приведёт к снижению тока в цепи. Как только батарея зарядится, транзистор VT1 закроется и нагрузка отключится. Ток заряда же ограничивается с помощью изменения сопротивления R1.

Кварцевый генератор

Такой генератор прямоугольных импульсов, собранный по схеме на отечественном компараторе K544C3, работает на тактовой частоте 32768 Гц. Схема будет работоспособной в диапазоне входного напряжения от 7 до 11 вольт. Частота задаётся кварцем ZQ1, но для работы устройства свыше 50 кГц понадобится уменьшить сопротивление R5 и R6.

При замыкании второго вывода с нулевым проводом выход компаратора оказывается включённым по схеме с открытым коллектором, в которой R7 является нагрузкой. Подстройка частоты выполняется с помощью C1. За счёт резистора R4 происходит автозапуск генератора. Изменяя сопротивление R2, меняется скважность импульсов.

Подбирая ёмкости С1 и С2, генератор можно использовать как бесконтактный датчик жидкости. В качестве детектора для этого понадобится использовать микроконтроллер с программным обеспечением. Хотя можно применить и ещё один компаратор, который будет регистрировать изменения, выпрямленного диодами напряжения.

Таким образом, компаратор напряжения предназначен для сравнения уровней сигналов на своих входах. Если они начинают различаться, то в зависимости от этой разности выход устройства изменяет своё состояние. Этим их свойством и пользуются разработчики, конструируя различные электроприборы.

Компаратор. Описание и применение. Часть 1

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Похожие записи:

  • LM393. Описание, datasheet, схема включения, аналог
  • Компаратор. Описание и применение. Часть 2

4 комментария

Если пишете что с однополярным источником питания, то почему вводите в заблуждение и указываете неправильную маркировку? + — это двуполярное питание. Если питание однополярное то нужно писать + и значок земли.

«Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.»

Это не так. Напряжение смещения является причиной того, что при замкнутых между собой прямом и инверсном входах через плечи входного дифференциального каскада протекают разные токи, хотя в идеале должны быть одинаковые. Напряжение смещения по определению представляет собой такую разность напряжений на входах, при которой токи в этих плечах становятся равными. Даже если вам попадется экземпляр компаратора у которого чисто случайно напряжение смещения окажется равным 0, то это никак не избавит его от того «что выходной транзистор не полностью открывается» при малых дифференциальных входных напряжениях. Причиной этого является не напряжение смещения, а конечный коэффициент усиления схемы. В некоторых компараторах для борьбы с логической неопределенностью на выходе вводят внутреннюю ПОС для образования гистерезиса, но не в обсуждаемых здесь микросхемах.

А вот выдержка из datasheet от TI на LM339:
«Overdrive voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage. To make an accurate comparison, the overdrive voltage (V OD ) must be higher than the input offset voltage (V IO ). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive.»

Отсюда видно что для гарантированно правильного срабатывания компаратора входной импульс должен иметь перепад больше (достаточно 1 мВ превышения, поскольку типичный коэффициент усиления для этих микросхем по напряжению порядка 50 В/мВ) чем напряжение смещения (которое гарантируется справочными данными не больше 9мВ, а для версии «A» не более 4мВ) т. к. из входного импульса как-бы вычитается напряжение смещения и дальше схема усиливает именно эту разность, а значит входной импульс будет однозначно определять выходной сигнал только если он по модулю превышает смещение. И еще при этом чем больше перепад тем быстрее появится отклик на выходе. Для входных импульсов 5мВ и 100мВ разница в задержке выходного сигнала может составлять 1/0,5мкс для положительного/отрицательного фронта.

Спасибо огромнейшее! Для меня как новичка, написано более чем доступно.

Компараторы, как они работают.

Общие сведения.

Компаратор – это операционный усилитель без обратной связи с большим коэффициентом усиления.
Поэтому, если подать на один его вход (например инверсный) какой то постоянный уровень опорного напряжения, а на другой вход (прямой) изменяющийся сигнал – выходное напряжение у него изменится скачком, от минимального до максимального в тот момент, когда уровень входного сигнала превысит уровень сигнала опорного напряжения, установленного на другом входе, и наоборот.

Компараторы имеют два входа, прямой и инверсный, и в зависимости от желаемого результата, опорное и сравниваемое напряжения, могут подключаться к любому входу.
Если входное напряжение на прямом входе, превысит напряжение инверсного входа, выходной транзистор компаратора открывается, если станет ниже – закрывается. То есть компаратор сравнивает напряжения.
Вот мы и подошли к сути основного назначения компаратора – сравнивать между собой два напряжения (сигнала), и выдавать на выходе напряжение (сигнал) в том случае, когда сигнал на одном входе, стал больше или меньше уровня, установленного опорным напряжением другого входа.
На компараторах можно собирать различные устройства, такие как терморегуляторы, стабилизаторы, различные устройства автоматики – используя для изменения входного сигнала различные датчики, такие как, терморезисторы, фоторезисторы, индикаторы влажности и т.д. и т.п.
Выходные каскады компараторов рассчитаны таким образом, чтобы их выходное напряжение соответствовало бы входному логическому уровню многих цифровых микросхем, поэтому их ещё могу называть формирователями.
В принципе на любом операционном усилителе можно построить компаратор (но не наоборот).
Рассмотрим самый распространённый компаратор К554СА3, (зарубежные аналоги LM-111, LM-211, LM-311).
На выходе этого компаратора включен транзистор с открытыми коллектором и эмиттером, и в зависимости от необходимого результата на выходе, его можно подключать по схеме с общим эмиттером или эмиттерным повторителем.
Схема включения компаратора для одно-полярного питания изображена на рисунке 1, для двух-полярного питания на рисунке 2.

Рисунок 1.
Схема включения компаратора в одно-полярное питание.
а – с общим эмиттером; б – эмиттерным повторителем.
Напряжение питания +5 вольт указано для уровня логики ТТЛ микросхем.

Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.

Рисунок 2.
Схема включения компаратора в двух-полярное питание.
а – с общим эмиттером; б – эмиттерным повторителем.

В качестве нагрузки компаратора можно использовать любую нагрузку с током потребления не более 50 мА. Это могут быть непосредственно обмотки реле, резисторы, светодиоды индикации и оптронов исполнительных устройств, с ограничивающими ток резисторами. Индуктивные нагрузки желательно шунтировать диодами от обратного выброса напряжения.
Напряжение питания компаратора может быть 5 – 36 вольт одно-полярного (или сумма двух-полярного) напряжения.

Процессы переключения компараторов.

Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый “дребезг”).
Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.
Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.

Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).

На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;

Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью “дребезг” выходного напряжения.

Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.

Компараторы. Устройство и работа. Виды и применение. Особенности

Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.

По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины. Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции. Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.

Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.

Принцип работы и виды интегральных компараторов

Компараторы с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает. В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.

На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.

При выборе компаратора следует обратить внимание на следующие параметры:
  • Диапазон напряжения питания.
  • Диапазон входных напряжений.
  • Максимальный ток на выходе компаратора.
  • Тип выхода.

Не все компараторы могут установить плюс питания на выходе.

Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.

Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.

Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.

Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.

Обозначения выводов выглядят следующим образом:

Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется. Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.

При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В. Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.

При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.

Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.

Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.

Работа компаратора напряжения

В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.

С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.

Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.

Характеристики компараторов

При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.

Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.

Устройство

Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.

Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».

Компаратор с памятью и стробированием

Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.

Простая схема структуры устройства со стробированием:

Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.

Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.

Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.

Классификация

Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.

Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.

Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора. Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства. Напряжение входа подается на неинвертирующие входы, которые соединены вместе.

В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.

Что такое компаратор напряжения и для чего он нужен

При разработке электронных схем зачастую надо сравнить уровень двух напряжений. Для этого используется такое устройство, как компаратор. Название узла восходит к латинскому comparare, или, скорее, к английскому to compare – сравнивать.

Что такое компаратор напряжения

Компаратором в общем случае называется устройство, имеющее два входа для подачи сравниваемых величин (напряжений) и выход для результата сравнения. Компаратор имеет два входа для подачи сравниваемых параметров – прямой и инверсный. На выходе устанавливается логическая единица при превышении напряжения прямого входа над инверсным и ноль – если наоборот. Если при положительной разности между инверсным и прямым входом устанавливается единица, а в противоположной ситуации – ноль, то такой компаратор называется инвертирующим.

Принцип работы компаратора

Компаратор удобно строить на операционном усилителе (ОУ). Для этого непосредственно используются его свойства:

  • усиление разности сигнала между прямым и инвертирующим входом;
  • бесконечный (на практике – от 10000 и выше) коэффициент усиления.

Работу ОУ в качестве компаратора можно рассмотреть при такой схеме включения:

Пусть имеется ОУ с коэффициентом усиления 10000, напряжение питания двуполярное, + 5 В и минус 5 В. Делителем на инвертирующем входе установлен опорный уровень ровно 0 вольт, на прямом входе с движка потенциометра снимается минус 5 вольт. Операционный усилитель должен усилить разницу в 10000 раз, теоретически на выходе должно появиться напряжение минус 50000 вольт. Но такого напряжения операционнику взять негде, и он создает максимум возможного – напряжение питания, минус 5 вольт.

Если начать поднимать напряжение на прямом входе, ОУ будет стараться выставить разность напряжений между входами, умноженную на 10000. Это ему удастся, когда входное напряжение приблизится к нулю и станет равным примерно минус 0,0005 В. При дальнейшем увеличении входного напряжения на положительном входе, выходное будет подниматься до нуля и выше, и при напряжении +0,0005 вольт станет равным +5 В и дальше не поднимется – некуда. Таким образом, при прохождении входным напряжением уровня нуля (точнее, минус 0,0005 вольт — + 0,0005) произойдет скачок выходного напряжения от минус 5 вольт до +5 вольт. Иными словами, пока напряжение на прямом входе ниже, чем на инвертирующем, на выходе компаратора устанавливается ноль. Если выше – единица.

Интерес представляет участок разности уровня на входах от минус 0,0005 вольт до + 0,0005. В теории при его прохождении произойдет плавный подъём от отрицательного напряжения питания до положительного. На практике этот диапазон очень узок, и из-за наводок, помех, нестабильности напряжения питания и т.д. при примерном равенстве напряжений на входах будет происходить хаотичное срабатывание компаратора в обе стороны. Чем ниже коэффициент усиления ОУ, тем это окно нестабильности шире. Если компаратор управляет исполнительным механизмом, то это вызовет его срабатывание в такт (щелканье реле, хлопанье клапана и т.п.), что может привести к его механической поломке или перегреву.

Чтобы этого избежать, создается неглубокая положительная обратная связь включением резистора, указанного штриховой линией. Это создает небольшой гистерезис, смещая пороги переключения при прохождении напряжения вверх и вниз относительно опорного. Например, вверх компаратор будет переключаться при 0,1 вольт, а вниз – ровно при нуле (зависит от глубины обратной связи). Это исключит окно нестабильности. Номинал этого резистора может быть от нескольких сотен килоом до нескольких мегаом. Чем ниже сопротивление, тем больше разница между порогами.

Также имеются специализированные микросхемы компараторов. Например, LM393. В таких микросхемах имеется быстродействующий операционный усилитель (или несколько), может быть установлен встроенный делитель, создающий опорное напряжение. Ещё одно отличие таких компараторов от устройств, построенных на ОУ общего применения – многим из них требуются однополярный источник питания. Большинству операционников нужно двуполярное напряжение. Выбор типа микросхемы производится при разработке устройства.

Особенности цифровых компараторов

Компараторы применяются и в цифровой технике, хотя это звучит, на первый взгляд, парадоксально. Ведь здесь имеется всего два уровня напряжения – единица и ноль. И сравнивать их бессмысленно. Зато можно сравнить два двоичных числа, в которые можно преобразовать и любые аналоговые величины (включая напряжение).

Пусть имеется два двоичных слова одинаковой длины в битах:

Они считаются равными по значению, если все биты поразрядно равны:

Если же хотя бы один бит отличается, то числа неравны. Большее число определяется поразрядным сравнением начиная со старшего бита:

  • 1101> 101 – здесь первый бит X больше первого бита Y, и X>Y;
  • 1101>1 01 – первые биты равны, но второй бит у X больше и X>Y;
  • 11 1 Где применяется компаратор напряжения

Сфера применения компаратора широка. На нём, например, можно построить пороговое реле. Для этого нужен датчик, преобразующий любую величину в напряжение. Такой величиной могут быть:

  • уровень освещенности;
  • уровень шума;
  • уровень жидкости в сосуде или резервуаре;
  • любые другие величины.

Потенциометром можно устанавливать уровень срабатывания компаратора. Выходной сигнал через ключ выдается на индикатор или исполнительный механизм.

Если увеличить гистерезис, то компаратор может работать в качестве триггера Шмитта. При подаче на вход медленно изменяющегося напряжения, на выходе получится дискретный сигнал с крутыми фронтами.

Два элемента могут быть соединены в двупороговый компаратор, или компаратор окна.

Здесь пороговое напряжение задается раздельно для каждого компаратора – для верхнего на прямом входе, для нижнего на инверсном. Свободные входы объединены, на них подается измеряемое напряжение. Выходы соединены по схеме «монтажное ИЛИ». При выходе напряжения за установленный верхний или нижний предел, один из компараторов выдает на выходе высокий уровень.

Из нескольких элементов собирается многоуровневый компаратор, который можно использовать, как линейный индикатор напряжения, или величину, которая преобразована в напряжение. Для четырех уровней схема будет такая:

В этой схеме на вход каждого элемента подается своё опорное напряжение. Инвертирующие входы соединены вместе, на них приходит измеряемый сигнал. При достижении уровня срабатывания загорается соответствующий светодиод. Если излучающие элементы расположить в линейку, получится световая полоса, длина которой изменяется в соответствии с уровнем поданного напряжения.

Эта же схема может применяться в качества аналого-цифрового преобразователя (АЦП). Он преобразует входное напряжение в соответствующий двоичный код. Чем больше элементов входит в АЦП, тем больше разрядность, тем точнее преобразование. На практике кодом-линейкой пользоваться неудобно, и он преобразовывается в привычный код с помощью шифратора. Шифратор можно построить на логических элементах, воспользоваться готовой микросхемой или применить ПЗУ с соответствующей прошивкой.

Сфера применения компараторов в профессиональной и любительской схемотехнике разнообразна. Грамотное применение этих элементов позволяет решать широкий круг задач.

Что такое триггер, для чего он нужен, их классификация и принцип работы

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

Для чего нужен диммер, что это такое, схема подключения диммера и принцип его работы

Читайте также:
Как самостоятельно посчитать объем щебня?
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: