Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения

Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея — накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи .

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  • Устройства серии PWM.
  • Устройства серии MPPT.

    Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

    Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

    Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

    Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

    Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

    Контроллер типа MPPT:

    • имеет более высокую стоимость;
    • обладает сложным алгоритмом настройки;
    • даёт выигрыш по мощности только на панелях значительной площади.

    Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

    Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

    Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

    Структурные схемы контроллеров

    Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

    Вариант #1 — устройства PWM

    Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

    Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

    Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

    Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

    Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

    Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

    Вариант #2 — приборы MPPT

    Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

    Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

    Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

    Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

    Схемой таких устройств реализуются несколько методов контроля:

    • возмущения и наблюдения;
    • возрастающей проводимости;
    • токовой развёртки;
    • постоянного напряжения.

    А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

    Способы подключения контроллеров

    Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

    Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

    Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

    Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

    Читайте также:
    Крепим бордюр для ванны керамический: Обзор и Виды- Размеры- Особенности монтажа: Плюсы и минусы +Видео

    Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

    Техника подключения моделей PWM

    Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

    Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

    Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  • Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  • Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  • На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  • Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

    Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

    Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

    Порядок подключения приборов MPPT

    Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

    Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

    Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

    Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

    Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

    Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

    Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

    Подключение периферии к аппарату MTTP:

  • Выключатели панели и аккумулятора перевести в положение «отключено».
  • Извлечь защитные предохранители на панели и аккумуляторе.
  • Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  • Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  • Соединить кабелем клемму заземления с шиной «земли».
  • Установить температурный датчик на контроллере согласно инструкции.

    После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

    Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

    Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

    Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

    Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения . Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

    Контроллеры для солнечных батарей

    Принцип работы контроллеров для заряда солнечных батарей, устройство, что учитывать при выборе

    В современных солнечных электростанциях для передачи выработанной электроэнергии рабочим аккумуляторам применяются разные схемы подключения источников тока. Они используют не одинаковые алгоритмы, созданы на основе микропроцессорных технологий, называются контроллерами.

    Как работают контроллеры заряда солнечных батарей

    Электроэнергия, вырабатываемая солнечной батареей, может передаваться накопительным аккумуляторным батареям:

    1. напрямую, без использования коммутационных приборов и регулирующих устройств,

    2. через контроллер.

    При первом способе электрический ток от источника пойдет к аккумуляторам и станет увеличивать напряжение на их клеммах. Вначале оно дойдет до определенного, предельного значения, зависящего от конструкции (типа) аккумуляторной батареи и окружающей температуры. Затем преодолеет рекомендуемый уровень.

    На начальном этапе заряда схема работает нормально. А вот дальше начинаются крайне нежелательные процессы: продолжающееся поступление зарядного тока вызывает повышение напряжения сверх допустимых значений (порядка 14 В), возникает перезаряд с резким возрастанием температуры электролита, приводящей к его закипанию с интенсивным выбросом паров дистиллированной воды из элементов. Иногда вплоть до полного высыхания емкостей. Естественно, что ресурс аккумуляторной батареи резко снижается.

    Поэтому задачу ограничения зарядного тока решают контроллерами или вручную. Последний способ: постоянно контролировать по приборам величину напряжения и коммутировать переключатели руками такой неблагодарный, что существует только в теории.

    Типовая схема подключения контроллера

    Алгоритмы работы контроллеров заряда солнечных батарей

    По сложности способа ограничения предельного напряжения приборы изготавливают по принципам:

    1. Откл/Вкл (или On/Off), когда схема просто коммутирует аккумуляторы к зарядному устройству по величине напряжения на клеммах,

    2. широтно-импульсных (ШИМ) преобразований,

    3. сканирования точки максимальной мощности.

    Принцип №1: Схема Откл/Вкл

    Это наиболее простой, но самый ненадежный метод. Его главный недостаток в том, что при возрастании напряжения на клеммах аккумумляторной батареи до предельного значения полного заряда емкости не происходит. Она доходит в этом случае примерно до 90% номинального значения.

    У аккумуляторов постоянно происходит регулярный недобор энергии, который значительно снижает срок их эксплуатации.

    Принцип №2: Схема ШИМ контроллеров

    Сокращенное обозначение этих устройств на английском языке: PWM. Они выпускаются на основе конструкций микросхем. Их задачей является управление силовым блоком для регулирования напряжения на его входе в заданном диапазоне с помощью сигналов обратной связи.

    PWM контроллеры дополнительно могут:

    учитывать температуру электролита встроенным либо выносным датчиком (последний способ точнее),

    создавать температурные компенсации зарядным напряжениям,

    настраиваться под определенный тип аккумуляторов (GEL, AGM, жидко-кислотные) с разными показателями графиков напряжений в одинаковых точках.

    Увеличение функций PWM контроллеров повышает их стоимость и надежность работы.

    График работы солнечной батареи

    Принцип №3: сканирование точки максимальной мощности

    Такие устройства обозначают английскими буквами MPPT. Они тоже работают по способу широтно-импульсных преобразователей, но предельно точны потому, что учитывают наибольшую величину мощности, которую способны отдать солнечные батареи. Это значение всегда точно определяется и вносится в документацию.

    Например, для гелиобатарей 12 В точка отдачи максимальной мощности составляет порядка 17,5 В. Обыкновенный PWM контроллер прекратит заряд аккумумляторной батареи при достижении напряжения 14 – 14,5 В, а работающий по технологии MPPT — позволит дополнительно использовать ресурс солнечных батарей до 17,5 В.

    С увеличением глубины разряда аккумуляторов возрастают потери энергии от источника. МРРТ контроллеры уменьшают их.

    Характер отслеживания напряжения, соответствующего отдаче максимальной мощности солнечной батареи в 80 ватт, демонстрируется усредненным графиком.

    Таким способом МРРТ контроллеры, используя широтно-импульсные преобразования во всех циклах заряда аккумуляторов, увеличивают отдачу солнечной батареи. В зависимости от разных факторов экономия может составлять 10 – 30%. При этом ток выхода из аккумулятора будет превышать ток входа в него из солнечной батареи.

    Основные параметры контроллеров заряда солнечных батарей

    При выборе контроллера для солнечной батареи кроме знания принципов его работы следует обратить внимание на условия, для которых он разработан.

    Главными показателями приборов являются:

    значение входного напряжения,

    величина суммарной мощности солнечной энергии,

    характер подключаемой нагрузки.

    Напряжение солнечной батареи

    На контроллер может подаваться напряжение от одной или нескольких солнечных батарей, соединенных по разным схемам. Для правильной работы прибора важно, чтобы суммарная величина подаваемого на него напряжения с учетом холостого хода источника не превышала предельной величины, указанной производителем в технической документации.

    При этом следует сделать запас (резерв) ≥ 20% из-за ряда факторов:

    не секрет, что отдельные параметры солнечной батареи иногда могут быть чуть-чуть завышены в рекламных целях,

    происходящие на Солнце процессы не носят стабильного характера, а при аномально повышенных вспышках активности возможна передача энергии, создающая напряжение холостого хода солнечной батареи выше расчетного предела.

    Мощность солнечной батареи

    Она важна для выбора контроллера потому, что прибор должен быть способен надежно передавать ее рабочим аккумуляторам. В противном случае он просто сгорит.

    Для определения мощности (в ваттах) умножают величину тока выхода из контроллера (в амперах) на напряжение (в вольтах), вырабатываемое солнечной батареей с учетом, созданного для него, 20% запаса.

    Характер подключаемой нагрузки

    Надо хорошо понимать назначение контроллера. Не стоит использовать его в качестве универсального источника питания, подключая к нему различные бытовые устройства. Конечно, часть из них сможет нормально работать, не создавая аномальных режимов.

    Но…насколько долго это будет продолжаться? Прибор работает на основе широтно-импульсных преобразований, использует микропроцессорные и транзисторные технологии, которые учли в качестве нагрузки только характеристики аккумуляторов, а не случайных потребителей со сложными переходными процессами при коммутациях и меняющимся характером потребляемой мощности.

    Краткий обзор производителей

    Выпуском контроллеров для солнечных электростанций занимаются многие страны. На Российском рынке популярна продукция компаний:

    Morningstar Corporation (ведущий производитель США),

    Beijing Epsolar Technology (работает с 1990-го года в Пекине),

    AnHui SunShine New Energy Co (КНР),

    Среди них всегда можно подобрать надежную модель контроллера, наиболее подходящую под конкретные условия эксплуатации солнечных электростанций с определенными техническими характеристиками. Для этого просто используете рекомендации этой статьи.

    Схема и принцип работы контроллера заряда солнечной батареи — рассматриваем во всех подробностях

    Опубликовано Артём в 09.02.2019 09.02.2019

    Основной сложностью использования солнечной энергии в быту является ее накопление. Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

    Необходимость

    При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

    Необходимость этого устройства можно свести к следующим пунктам:

    1. Зарядка аккумулятора многостадийная;
    2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
    3. Подключение аккумулятора при максимальном заряде;
    4. Подключение зарядки от фотоэлементов в автоматическом режиме.

    Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

    Функции контроллеров

    Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:

    • перезаряд
    • недозаряд

    Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.

    Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.

    На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.

    Как работает контроллер зарядки аккумулятора?

    В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

    Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

    Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

    Простейшие контроллеры типа Откл/Вкл (или On/Off)

    Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

    Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

    Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

    Виды контроллеров

    Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

    • ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.
      В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками.
    • ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
    • MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.

    Как выбрать контроллер для солнечной батареи?

    Это очень важное устройство, которое достаточно сложно правильно подобрать среди великого многообразия. Чтобы взять то что действительно нужно придерживайтесь следующих данных:

    • Мощность батареи. На выходе общая мощность не должна быть больше показателя тока.
    • Уровень входящего напряжения. Он должен быть больше на 20% чем U АКБ, которое производится преобразователями света в ток.

    Контроллер заряда солнечной батареи на данный момент выпускается всех мастей. Он может обладать защитой от плохих погодных условий, больших нагрузок, замыканий, перегреваний и даже от неправильного включения. Например, такое может случится, когда путаете полярность. В результате брать нужно такое устройство, которое будет иметь несколько уровней защиты.

    Популярные компании производители

    1. Автоматика-с.
    2. Эмикон.
    3. Овен.
    4. SLC 500
    5. Allen-Bradleo.
    6. Micro Logix

    Данные изготовители занимаются производством подобных приспособлений уже много лет.

    Стоимость

    Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

    Параметры выбора

    Критериев выбора всего два:

    1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
    2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

    Порядок подключения устройств МРРТ

    Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

    На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

    Все подключения к прибору МРРТ осуществляются в следующем порядке:

    • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
    • Далее производится извлечение защитных предохранителей.
    • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
    • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
    • Клемма заземления прибора соединяется с заземляющей шиной.
    • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

    По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

    Контроллер своими руками

    Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ — такая перспектива уже не кажется раумной. Собрать качественный MPPT — контроллер в домашних условиях — вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

    Ветряк для частного дома — игрушка или реальная альтернатива Как выбрать солнечную панель — обзор важных параметров Виды садовых светильников и фонарей на солнечных батареях, как и где использовать. Выгодно ли покупать комплектом солнечные батареи для дачи

    Видео

    Как правильно подключить контроллер, вы узнаете из нашего видео.

    Кол-во блоков: 14 | Общее кол-во символов: 13535
    Количество использованных доноров: 5
    Информация по каждому донору:

    Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения

    Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

    В представленной нами статье разберемся в устройстве и принципах работы этого прибора, а также рассмотрим способы его подключения.

    Основное назначение

    Контроллер заряда аккумуляторной батареи (АКБ) от солнечной батареи предназначен для поддержания уровня заряда аккумуляторов, который также не допускает их полную разрядку или перезарядку. К таким устройствам обычно подключают свинцовые аккумуляторы из-за своей распространенности, однако, возможно подключение других разновидностей. Контроллер для солнечных батарей выполняет большое количество функций, благодаря которым обеспечивается надежная и эффективная работа. Основными из них являются:

    • выбор наиболее эффективной системы заряда аккумулятора;
    • мониторинг заряженности батареи;
    • автоматическое включение и выключение;
    • грамотное распределение энергии;
    • защита от перенапряжения и разрыва цепи.

    Необходимость

    При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

    Необходимость этого устройства можно свести к следующим пунктам:

    1. Зарядка аккумулятора многостадийная;
    2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
    3. Подключение аккумулятора при максимальном заряде;
    4. Подключение зарядки от фотоэлементов в автоматическом режиме.

    Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.



    Разновидности

    На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.

    MPPT-контроллер

    Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

    • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
    • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
    • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
    • Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
    • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
    • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
    • В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
    • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
    • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

    Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

    PWM-контроллер

    Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

    • Напряжение на входе не более 140 В.
    • Работают с солнечными батареями на 12 и 24 В.
    • КПД практически равен 100%.
    • Возможность работы с множеством аккумуляторов различного типа.
    • Максимальное значение тока на входе достигает 60 А.
    • Температура функционирования от –25 до 55 ºC.
    • Возможность зарядить АКБ с нуля.

    Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

    MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

    Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

    Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.

    Где устанавливается

    Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

    Также важно наличие предохранителя, который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

    На рисунке ниже показано, как выглядит инвертор (черная коробка):

    Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

    Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.



    Выводы и полезное видео по теме

    Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

    Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

    Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно по теме статьи.

    Как осуществить подключение самостоятельно

    Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

    На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

    Более подробная схема представлена ниже.

    Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

    Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

    Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

    Что будет, если не производить установку

    Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

    Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

    Параметры выбора

    Критериев выбора всего два:

    1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
    2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

    Контроллер заряда своими руками

    При наличии опыта в работе с электротехническим оборудованием создать контроллер для заряда солнечной батареи можно самостоятельно. На картинке ниже представлена самая простая схема такого устройства.

    Рассмотрим принцип работы такой схемы. Фотоэлемент LDR или фоторезистор — прибор, который меняет свое сопротивление при попадании на него света, то есть это солнечная панель. Управляется с помощью транзисторов. Во время облучения солнцем транзисторы закрыты. Ток передается от панели к аккумулятору через диод D2, нужен он здесь для того, чтобы ток не потек в другую сторону. При полной зарядке стабилизатор ZD отсылает сигнал лампе LED red, которая зажигается красным светом, и зарядка прекращается. Когда напряжение на аккумуляторе уменьшается, стабилизатор выключается, и происходит зарядка. Резисторы необходимы для того, чтобы уменьшить силу тока, чтобы элементы не вышли из строя. На схеме также указан трансформатор, от которого тоже может происходить зарядка, принцип тот же. По данной ветке начинает течь ток в темное время суток или в пасмурную погоду.

    Чем можно заменить некоторые комплектующие

    Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

    Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять. Можно установить обычный диод, но его нужно правильно разместить.

    Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно.

    Контроллер заряда солнечной батареи

    Чтобы выбрать необходимый контроллер, необходимо определиться, какие солнечные панели установлены или планируется установить. Далее необходимо рассчитать их мощность, определить, на какое рабочее напряжение они рассчитаны, уточнить прочие параметры формируемой системы.

    Контроллеры для солнечных батарей

    Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

    Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

    Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

    Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

    Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

    В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

    В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

    Схема работы контроллера

    Разбираться в принципиальных схемах приборов могут не все пользователи. Но это и не обязательно, вполне достаточно понять принцип их работы на уровне блоков или узлов прибора. Рассмотрим структурные схемы двух разновидностей контроллеров:

    Применяемые на практике виды

    На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

    • Устройства серии PWM.
    • Устройства серии MPPT.

    Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.

    Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

    Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

    Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

    Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

    Контроллер типа MPPT:

    • имеет более высокую стоимость;
    • обладает сложным алгоритмом настройки;
    • даёт выигрыш по мощности только на панелях значительной площади.

    Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

    Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

    Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

    Структурные схемы контроллеров

    Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

    Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

    Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

    Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

    Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

    Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

    Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

    Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

    Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

    Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

    Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

    Схемой таких устройств реализуются несколько методов контроля:

    • возмущения и наблюдения;
    • возрастающей проводимости;
    • токовой развёртки;
    • постоянного напряжения.

    А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

    Какие параметры контроллера необходимо учитывать

    Чтобы определить критерии при выборе контроллера, необходимо сформулировать функции, которые он выполняет, к ним можно отнести следующие:

    • Обеспечение заряда аккумуляторной батареи;
    • Отключение аккумуляторной батареи при полном заряде в автоматическом режиме;
    • Отключение нагрузок при минимальном заряде в автоматическом режиме;
    • Подключение нагрузок при восстановлении заряда;
    • Подключение фотоэлементов при заряде аккумуляторной батареи в автоматическом режиме.

    Определившись с функциями, за выполнение которых отвечает контроллер, можно сформулировать параметры, которые обязательно учитывают при выборе устройства.

    Основных параметров два, это:

    1. Напряжение, которое фиксируют на входе. Максимально допустимое напряжение может на 15 — 20% бытьвыше, чем на «холостом ходу» солнечной панели.
    2. Показатели номинального тока. Для ШИМ (PWM) контроллера этот количественный показатель должен быть выше на 10% показателя тока при коротком замыкании в работе солнечной панели. MPPT-контроллер выбирают по мощности, которая должна быть выше величины произведения выходного тока регулятора и напряжения всей системы, плюс 20% от полученного значения, для создания запаса мощности в периоды активного солнца.

    Современные модели контроллеров оснащены разнообразными защитными механизмами и возможностью работы в разных режимах. Наличие подобных элементов в конструкции того или иного прибора не влияет на основные параметры при его выборе, но дополнительно стимулирует приобретение той или иной модели.

    К таким элементам защиты можно отнести:

    • Защита от подключения неправильной полярностью;
    • Защита на входе от случаев короткого замыкания;
    • Защита во время нагрузок от короткого замыкания;
    • Защита от перегревов;
    • Защита на входе от высоких нагрузок напряжения;
    • Защита от ударов молний;
    • Схемы предотвращения ночного разряжения аккумуляторных батарей;
    • Электронные предохранители.

    Способы подключения контроллеров

    Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

    Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

    Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

    Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

    Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

    Порядок подключения приборов MPPT

    Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

    Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

    Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .

    Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

    Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

    Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

    Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

    Подключение периферии к аппарату MTTP:

    1. Выключатели панели и аккумулятора перевести в положение «отключено».
    2. Извлечь защитные предохранители на панели и аккумуляторе.
    3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
    4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
    5. Соединить кабелем клемму заземления с шиной «земли».
    6. Установить температурный датчик на контроллере согласно инструкции.

    После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

    Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

    Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

    Порядок подключения контроллеров PWM

    Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

    Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

    При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

    • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
    • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
    • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
    • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

    Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.

    Стоимость

    Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

    • Solar controller 20a – стоимость 20,75$ — простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
    • MPPT Tracer 2210RN Solar Charge Controller Regulator, цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

    Контроллер заряда для солнечной батареи

    Хозяева загородных коттеджей все чаще используют комплекты гелиосистем, как один из альтернативных источников электрической энергии. В ее состав входят фотоэлектрические элементы, аккумуляторная батарея, контроллер заряда солнечной батареи, инвертор и другое оборудование. Данные системы могут работать автономно или вместе с основными электрическими сетями. Во всех случаях аккумулятор накапливает заряд, а потом отдает его потребителям, когда это необходимо. Контроллер обслуживает аккумуляторную батарею, не допуская ее перезарядки или чрезмерного разряда.

    1. Основные функции и работа контроллера
    2. Простейшие контроллеры типа Откл/Вкл (или On/Off)
    3. Контроллеры для аккумуляторов типа PWM
    4. Устройства МРРТ
    5. Порядок подключения контроллеров PWM
    6. Порядок подключения устройств МРРТ

    Основные функции и работа контроллера

    Устройство, контролирующее заряд, можно смело назвать одним из основных компонентов солнечных электростанций. Конструктивно, он является прибором электронного типа, функционирующим на основе специального чипа. Данный чип осуществляет контроль над действием всей системы, а его первоочередная задача состоит в управлении процессом зарядки аккумуляторной батареи. Таким образом, предотвращается избыточный ток или полный разряд аккумулятора.

    Когда степень заряженности выходит на максимальный уровень, подача электричества от солнечных фотоэлементов сокращается и опускается до уровня, обеспечивающего компенсацию саморазряда. В случае сильной разрядки контроллер автоматически отключает батарею от нагрузки. После того как уровень заряда оказывается восстановлен, нагрузка снова подключается к источнику тока.

    Электрическая энергия, выработанная солнечными батареями, может передаваться на аккумулятор по разным схемам. Один из способов предусматривает прямую передачу тока, без каких-либо коммутационных и регулирующих устройств. В результате такой подачи, напряжение на клеммах станет постепенно расти, и в конце концов оно достигнет определенного уровня, в зависимости от конструкции АКБ и температуры окружающей среды. То есть, на начальной стадии зарядки такая схема полностью себя оправдывает.

    Однако, после того как заряд превысит рекомендуемое значение, в батарее возникают негативные процессы. Ток, продолжающий поступать, приводит к росту напряжения и последующей перезарядке. Из-за этого нагрев электролита резко увеличивается, после чего он закипает и начинается интенсивный выброс дистиллированной воды, превратившейся в пар. В некоторых случаях емкости могут полностью высохнуть, что приводит к резкому снижению ресурса аккумулятора.

    Во избежание подобных ситуаций зарядный ток ограничивается с помощью контроллеров. Эту операцию можно выполнять вручную, однако такой способ требует постоянного контроля напряжения по приборам и своевременного переключения. Поэтому в реальных условиях он практически не используется, поскольку существует автоматика.

    Для ограничения тока используются разные контроллеры – от простых до более сложных. Условно они разделяются на следующие типы:

    • Приборы, где применяется схема обычного включения-отключения в зависимости от состояния напряжения на клеммах АКБ.
    • Устройства, использующие широтно-импульсные преобразования (ШИМ).
    • Контроллеры заряда солнечной батареи, сканирующий точки с максимальной мощностью (МРРТ).

    Каждое из этих устройств следует рассмотреть более подробно, чтобы в дальнейшем не ошибиться и правильно выбрать нужный.

    Простейшие контроллеры типа Откл/Вкл (или On/Off)

    Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

    Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

    Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

    Контроллеры для аккумуляторов типа PWM

    Более технологичным и эффективным считаются контроллеры заряда аккумулятора от солнечной батареи типа PWM, сокращенное название которого получилось от Pulse-Width Modulation. В переводе на русский язык данное устройство относится к категории ШИМ, то есть в его работе используется широтно-импульсная модуляция тока.

    Основной функцией прибора является устранение проблем, возникающих при неполной зарядке. Полного уровня удается достичь благодаря возможности понижения тока, когда он достигает максимального значения. Зарядка становится более продолжительной, но и эффект от нее значительно выше.

    Работа контроллера осуществляется следующим образом. Перед входом в прибор электрический ток попадает в стабилизирующий компонент и резистивную разделительную цепочку. На этом участке потенциалы входного напряжения выравниваются, обеспечивая тем самым защиту самого контроллера. В разных моделях граничное входное напряжение может отличаться.

    Далее в работу включаются силовые транзисторы, ограничивающие ток и напряжение до установленных значений. Они находятся под управлением чипа, использующего микросхему драйвера. После этого выходное напряжение транзисторов приобретает нормальные параметры, подходящие для зарядки аккумулятора. Данная схема дополняется температурным датчиком и драйвером. Последний компонент воздействует на силовой транзистор, выполняющий регулировку мощности подключенной нагрузки.

    Таким образом, АКБ оказывается защищенной от глубокой разрядки. Температурный датчик контролирует степень нагрева наиболее важных деталей контроллера. В случае повышения температуры более чем это установлено в настройках, происходит автоматическое отключение всех цепочек активного питания. В результате, батарея поддерживается в хорошем состоянии, а срок ее эксплуатации значительно увеличивается.

    Устройства МРРТ

    Наиболее эффективными и стабильными считаются контроллеры для солнечной батареи модификации МРРТ – Maximum Power Point Tracking. Данные устройства осуществляют слежение за мощностью заряда по достижении максимального предела. В этом процессе используются сложные алгоритмы контроля показаний напряжения и тока, устанавливается наиболее оптимальное соотношение характеристик, обеспечивающих максимальную эффективность солнечной системы.

    В процессе эксплуатации практически установлено, что контроллер для солнечных батарей mppt является более совершенным и существенно отличается от других моделей. По сравнению с приборами PWM, он эффективнее примерно на 35%, соответственно на столько же продуктивнее получается и сама система.

    Более высокое качество и надежность таких устройств достигается за счет сложной схемы, дополненной компонентами, обеспечивающими тщательный контроль в соответствии с условиями эксплуатации. Специальные схемы выполняют слежение и сравнение уровней тока и напряжения, после чего определяется максимальная выходная мощность.

    Главной особенностью контроллеров МРРТ является способность настройки солнечной панели на максимальную мощность вне зависимости от погоды в данный момент. Таким образом, батарея работает более эффективно и обеспечивает необходимый заряд АКБ.

    Порядок подключения контроллеров PWM

    Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

    Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

    При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

    • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
    • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
    • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
    • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

    Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.

    Порядок подключения устройств МРРТ

    Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм 2 . Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм 2 .

    На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

    Все подключения к прибору МРРТ осуществляются в следующем порядке:

    • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
    • Далее производится извлечение защитных предохранителей.
    • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
    • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
    • Клемма заземления прибора соединяется с заземляющей шиной.
    • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

    По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

    Контроллеры для заряда солнечной батареи: тонкости подбора и монтажа

    Особую популярность в последнее время приобрели системы, функционирующие автономно, без подключения к электросети. Подобные устройства идеально подходят для работы в замкнутом режиме. Конструкции подобных систем довольно сложные и состоят из нескольких элементов, самым главным из которых является контроллер.

    Особенности

    Контроллеры заряда имеют несколько немаловажных особенностей. Наиболее важными являются функции защиты, которые служат для повышения степени надежности работы данного устройства.

    Необходимо отметить наиболее распространенные в подобных конструкциях разновидности защит:

    • устройства оснащены надежной защитой от неправильного подсоединения полярности;
    • очень важно предотвратить вероятность коротких замыканий в нагрузке и на входе, поэтому производители обеспечивают контроллеры надежной защитой от возникновения подобных ситуаций;
    • немаловажной является защита устройства от молнии, а также различных перегревов;
    • конструкции контроллеров оснащаются специальной защитой от перенапряжений и разрядки аккумулятора в ночное время суток.

    Дополнительно устройство оснащается разнообразными электронными предохранителями и специальными информационными дисплеями. Монитор позволяет узнать необходимую информацию о состоянии аккумулятора и всей системы.

    Помимо этого, на экране отображается множество другой немаловажной информации: напряжение аккумуляторной батареи, степень заряда и многое другое.

    В конструкцию многих моделей контроллеров входят специальные таймеры, благодаря которым активируется ночной режим работы прибора.

    Кроме того, существуют более сложные модели подобных устройств, способные одновременно управлять работой двух независимых друг от друга батарей. В наименовании подобных приборов присутствует приставка Duo.

    Необходимо отметить современные модели приборов, которые способны сбрасывать лишнюю энергию на ТЭНы.

    Существует несколько типов контроллеров для заряда солнечных батарей. Наиболее простым и доступным по стоимости прибором является On/Off.

    Основным предназначением и преимуществом данного вида приборов является своевременное отключение подачи заряда на аккумулятор. Это свойство аппарата немаловажно: во время достижения оптимального напряжения оно помогает избежать перегревания прибора. При этом обязательно следует упомянуть о недостатке подобного вида устройств – быстрое отключение. После того как будет достигнут максимальный ток, нужно в течение примерно двух часов поддержать процесс заряда, однако данный прибор отключает его сразу. Степень заряда аккумулятора в этом случае будет порядка 70 процентов, что значительно ниже необходимого значения. Этот показатель оказывает негативное влияние на работу аккумуляторной батареи.

    Второй тип контроллеров для заряда солнечной батареи – электронный прибор PWM. Выпуск подобной конструкции был налажен сравнительно давно. В основу работы устройства заложены специальные алгоритмы широтно-импульсной модуляции. Несмотря на это, подобные приборы достаточно эффективны. PWM-устройства являются оптимальным вариантом для использования в бытовых условиях.

    Более современное электронное устройство – МРРТ. Прибор оснащен новейшими технологиями, направленными на отслеживание максимальной степени мощности. Это в несколько раз увеличивает эффективности и функциональность данного устройства. Однако, несмотря на это, необходимо отметить, что при выборе устройства для использования в бытовых условиях следует выбирать прибор из серии PWM. Это обусловлено высокой стоимостью приборов из серии МРРТ, а также сложной настройкой. Подобные устройства являются оптимальным вариантом для применения в системах масштабной солнечной энергетики.

    Если вы хотите подобрать гибридный вариант, тогда, прежде всего, необходимо понять, как микроконтроллер работает (принцип работы и ШИМ).

    Как выбрать

    Выбирая подходящий контроллер для заряда солнечной батареи, необходимо обратить особое внимание на несколько очень важных критериев.

    На первом месте стоит входящее напряжение. Максимальное значение данного показателя должно соответствовать определенным нормам. В конструкциях подобных устройств иногда используются несколько батарей. Поэтому напряжение на схему прибора идет одновременно от всех батарей, соединенных различными способами. Чтобы прибор правильно функционировал, необходимо определенное напряжение, показатели которого не должны превышать предусмотренные производителем нормы.

    Чтобы показатели напряжения соответствовали необходимым стандартам, следует учитывать некоторые нюансы:

    • завышение всех показателей конструкции для заряда солнечной батареи – в целях рекламы;
    • неустойчивость различных процессов, происходящих в фотоэлементах прибора, во время сильных световых вспышек, при этом могут быть значительно превышены показатели энергии, которая оказывает влияние на напряжение в аппарате во время холостой работы батареи.

    Вторым немаловажным критерием является номинальный ток. Значение данного показателя у каждого вида устройств разное. Поэтому при выборе того или иного прибора следует предварительно уточнять необходимые нормы мощности – для эффективной работы контроллера данные показатели очень важны. Устройство передает эти значения аккумулятору. В том случае, если прибор не будет получать необходимую мощность, может возникнуть непредвиденная ситуация, и произойдет поломка устройства.

    Для расчета значения мощности за основу берется показатель напряжения при разряженных аккумуляторах аппарата. При этом необходимо перемножить показатели выходного тока и напряжение, которое вырабатывается солнечной батареей. После этого следует добавить к полученному результату 20 процентов на резерв.

    Еще одним важным критерием при выборе контроллера является вид нагрузки. Не следует использовать устройство для подключения различных бытовых приборов. Это приведет к выводу контроллера из строя, что обусловлено использованием в конструкции прибора различных технологий, которые учитывают всю нагрузку, заложенную в свойствах аккумулятора. Чтобы избежать возникновения подобных ситуаций, необходимо использовать устройство строго по назначению.

    Схема установки

    Вы можете сделать самодельный вариант своими руками и настроить его, если будете учитывать все наши рекомендации.

    Следует отметить, что при подключении каждого типа подобных приборов необходимо использовать максимально соответствующий вид солнечных панелей. Например, при использовании устройства, рассчитанного на входное напряжение порядка 100 вольт, следует воспользоваться солнечными панелями, у которых подобный показатель на выходе соответствует данному значению.

    Прежде чем приступить к подключению прибора, следует определиться с наиболее подходящим местом для его установки. Оптимальным решением данного вопроса является сухое, хорошо проветриваемое помещение. Категорически не рекомендуется располагать рядом с аппаратом легковоспламеняющиеся материалы. Помимо этого, категорически недопустимо расположение устройства очень близко к различным источникам вибрации, влажности, а также разнообразным обогревателям и печам. Место для размещения аппарата должно быть надежно защищено от различных атмосферных осадков и прямых солнечных лучей.

    Последовательность подключения устройств PWM

    Чтобы добиться максимального эффекта от использования подобного устройства, необходимо точно следовать инструкции, а также соблюдать определенную последовательность при подключении аппарата. Процесс подсоединения приборов PWM и различных периферийных устройств не вызовет больших затруднений – справиться с данной задачей сможет любой человек.

    Каждая конструкция оснащена специальными маркированными клеммами.

    Подключение периферийных устройств необходимо осуществлять в точном соответствии с обозначениями на контактных клеммах:

    • необходимо соединить аккумулятор и аккумуляторную батарею при помощи специального провода и клеммы, внимательно соблюдая полярность;
    • к определенному положительному проводу нужно подсоединить предохранитель, предназначенный для защиты прибора;
    • на соответствующих контактах контроллера следует зафиксировать специальные проводники, выходящие от батареи солнечных панелей, при этом также нужно тщательно соблюдать полярность;
    • следует подсоединить к определенным выходам аппарата специальную лампу для контроля соответствующего напряжения.

    Не следует нарушать указанную последовательность. Например, категорически не рекомендуется подсоединять к контроллеру при отключенном аккумуляторе солнечные панели – это может привести к поломке аппарата. Инвертор конструкции нужно соединять с аккумуляторной батареей при помощи специальных клемм.

    Порядок подключения приборов MPPT

    Общие правила подключения этого типа аппаратов практически идентичны монтажу других видов приборов. Однако технология установки немного отличается, так как контроллеры MPPT относятся к более мощным устройствам.

    Для конструкций, рассчитанных на высокую мощность, для соединения силовых цепей необходимо использовать электрокабели с большим сечением.

    Соединительные электрокабели обязательно должны быть оснащены специальными наконечниками, выполненными из меди, которые необходимо предварительно обжать с помощью определенного инструмента. Отрицательные клеммы солнечной панели и аккумулятора следует оснастить специальными переходниками с предохранителями и выключателями. Благодаря подобному оснащению конструкции прибора можно добиться значительного сокращения потери энергии и гарантированной максимально безопасной эксплуатации конструкции.

    Предварительно перед подключением прибора обязательно следует убедиться, что напряжение на клеммах соответствует либо имеет значение меньше допустимой нормы, которая необходима для подачи на вход контроллера.

    Подсоединение периферии к аппарату MTTP:

    • предварительно следует отключить прибор и аккумулятор при помощи специальных выключателей;
    • необходимо демонтировать специальные предохранители на солнечной панели и аккумуляторе;
    • нужно подсоединить при помощи электрокабеля и клемм аккумулятор и контроллер;
    • подключить с помощью специального провода и клемм солнечную панель с аппаратом (данные элементы обозначены соответствующими знаками);
    • соединить с помощью электрокабеля определенную клемму заземления с шиной «земли»;
    • установить на конструкции специальный датчик, определяющий температуру.

    Только после выполнения всех этих действий можно поставить на место предохранитель аккумуляторной батареи и перевести выключатель в положение «включено». На мониторе устройства появится значок, обозначающий аккумулятор.

    После этого необходимо подождать несколько минут, установить предохранитель солнечной панели и включить устройство при помощи специального выключателя, расположенного на панели прибора. На мониторе отобразится определенный значок, обозначающий напряжение солнечной панели. Это говорит об успешном начале работы прибора.

    Советы

    Чтобы добиться максимальной отдачи, необходимо устанавливать устройства в местах, хорошо освещенных солнцем. При этом немаловажно расположить прибор максимально высоко.

    Конструкция лицевой стороной должна быть направлена в южном направлении. Допускается незначительное отклонение, которое не должно превышать 20 градусов.

    Прибор устанавливается под определенным углом к уровню горизонта.

    В конструкцию наиболее усовершенствованных устройств входит специальный электропривод, который меняет угол в зависимости от положения солнца.

    О том, какие существуют тонкости подбора и монтажа солнечной батареи, смотрите в следующем видео.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: