Контроллеры заряда солнечной батареи

Солнечные контроллеры — какие они бывают и для чего нужны?

Зачем нужны солнечные контроллеры

  • 1 Зачем нужны солнечные контроллеры
  • 2 Какие бывают солнечные контроллеры заряда для аккумуляторов?
  • 3 Методы регулирования, применяемые в солнечных контроллерах
  • 4 Вычисление степени заряженности аккумуляторной батареи

Любая автономная система электроснабжения, содержащая в своем составе аккумуляторные батареи, должна содержать в себе средства контроля заряда и разряда аккумуляторов. Контроллеры заряда используются в автономных фотоэлектрических системах для правильного заряда аккумуляторных батарей (АБ ), для защиты перезаряда (когда батарея заряжена, а солнечная панель вырабатывает избыток электричества). Некоторые модели имеют также разъемы для подключения нагрузки постоянного тока и защищают АБ от глубокого разряда.

Использование контроллеров заряда настоятельно рекомендуется. Он обеспечивает трехстадийный (обычно) заряд аккумулятора. Стадии заряда свинцово-кислотных аккумуляторов подробно расписаны в статье про контроллеры с ШИМ .

Особенно это относится к системам со свинцово-кислотными аккумуляторами. Дело в том, что эти аккумуляторы боятся как глубокого разряда, так и перезаряда. В случае переразряда, резко сокращается срок службы аккумуляторной батареи или даже она может выйти из строя. Если же аккумулятор заряжен, но через него продолжает протекать зарядный ток, то это может привести в закипанию электролита и бурному газовыделению (в случае с заливными батареями) или к вспучиванию и даже взрыву герметичных аккумуляторных батарей.

Щелочные батареи хотя и не боятся глубокого разряда, но также не терпят перезаряда. Для литиевых аккумуляторов кроме защит от перезаряда и переразряда в обязательном порядке необходимо ставить систему балансировки напряжения между элементами последовательной цепочки.

Схема подключения солнечного контроллера заряда в фотоэлектрической системе

Поэтому в систему автономного электроснабжения вводятся устройства, которые отключают нагрузку от аккумуляторных батарей если они недопустимо разряжены, а также отключают источник энергии (фотоэлектрическую батарею, ветротурбину и т.п.) если аккумуляторы заряжены.

Контроллер разряда отключает нагрузку, когда аккумулятор недопустимо разряжен. Обычно фотоэлектрические солнечные комплекты снабжаются контроллером заряда-разряда. Никогда на подключайте нагрузку напрямую к АБ минуя контроллер заряда для того, чтобы получить «последнюю порцию» энергии от батареи. Этим вы можете вывести вашу АБ из стоя.

Напряжения отключения нагрузки для свинцово-кислотных батарей обычно лежат в пределах от 10,5 до 11,5 В. Для 12 В аккумуляторных батарей при более чем 10-часовом разряде это означает использование от 100% до 20% номинальной емкости. При более быстрых разрядах количество отбираемой емкости уменьшается.

Напряжение отключения источника энергии обычно равно 14-14,3 В. Это предотвращает газовыделение при заряде аккумуляторных батарей. Существуют контроллеры заряда, в которых предусмотрен режим «выравнивания». Такой режим необходим периодически для заливных батарей, напряжение заряда при этом должно быть около 15 В. Для герметичных батарей такой режим запрещен.

Часто напряжения отключения можно регулировать при изготовлении или настройке. Но, в основном, контроллеры заряда продаются с уже установленными «типовыми» уровнями напряжений отключения.

Какие бывают солнечные контроллеры заряда для аккумуляторов?

Современные контроллеры заряда аккумуляторов от солнечных батарей подразделяются на 2 большие группы — PWM (ШИМ ) и MPPT (со слежением за ТММ ).

Солнечные контроллеры заряда могут быть встроены в инверторы или блоки бесперебойного питания. В ББП обычно встраиваются и зарядные устройства. См., например, ББП Prosolar Combi и инверторы Studer AJ-S

Мы не рекомендуем экономить на хорошем контроллере заряда для солнечной энергосистемы. Типичное распределение стоимости элементов энергосистемы следующее:

Элемент Срок службы, лет Цена
Солнечный модуль 20-30 25-30%
Контроллер заряда 10 2-4%
Аккумуляторы 2-6 50-60%
Остальное более 10 10%

Как видим, стоимость солнечного контроллера составляет малую часть от общей стоимости энергосистемы. Однако, технологии заряда очень сильно влияют как на эффективность использования солнечной энергии, так и на срок службы одной из самых дорогостоящих частей системы автономного электроснабжения — аккумуляторных батарей.

Контроллеры заряда отличаются по

  1. алгоритму заряда на последней стадии заряда при достижении напряжения заряженного аккумулятора,
  2. по способам регулирования тока (шунтовые и последовательные),
  3. по возможности слежения за точкой максимальной мощности (СТММ) солнечного модуля.

Методы регулирования, применяемые в солнечных контроллерах

Наиболее сложные контроллеры умеют следить за точкой максимальной мощности фотоэлектрических батарей. Такие контроллеры называются MPPT контроллерами (Maximum Power Point Tracking — Слежение за Точкой Максимальной Мощности). Причем MPPT контроллеры также используют ШИМ для регулирования тока заряда аккумуляторов.

В шунтовых контроллерах солнечная батарея замыкается накоротко; таким образом, ток от солнечной батареи течет через шунт и не попадает в аккумулятор. Такой принцип работы не позволяет подключать ко входу контроллера другие источники энергии, кроме фотоэлектрических батарей.

В последовательных контроллерах источник энергии отключается от аккумулятора и нагрузки. Напряжение на источнике энергии поднимается до значения напряжения холостого хода.

Каждый тип регулирования имеет свои преимущества и недостатки.

Регулирование Достоинства Недостатки Иллюстрация
Последовательное
все контроллеры EPSolar, SRNE
Steca (кроме PR и Tarom)
MorningStar
RE SunStar
1. Можно использовать различные источники
2. Меньший нагрев при регулировании
3. Отключение источника при полном заряде
1. Потери в последовательных ключах
2. Большие скачки тока при регулировании приводят к высоким электромагнитным помехам

Последовательное регулирование тока заряда
Шунтовое
Steca PR и Tarom
1. Низкий уровень электромагнитных помех
2. Низкое падение напряжения в ключах
3. Малые потери мощности СБ за счет прямого соединения СБ с АБ
1, Больший нагрев во время регулирования
2. Можно использовать только с СБ

Шунтовое регулирование тока заряда
MPPT
EPSolar Tracer, SRNE MR,
Steca Solarx MPPT
Proslar SunStar MPPT
Outback FlexMax
Morninstar Tristar MPPT
SE XW MPPT
Studer VarioTrack и VarioString
1. Разное напряжение на входе и выходе контроллера
2. Возможно подключение различных источников на вход
3. Гальваническая развязка входа и выхода
4. Большая выработка энергии за счет работы в ТММ модуля
1. Потери на преобразования
2. Более сложная технология
3. Более высокая цена

Топология MPPT контроллера
Читайте также:
Как подобрать шторы и покрывало из одной ткани для спальни: советы специалистов

Вычисление степени заряженности аккумуляторной батареи

  • Steca серий PR и Tarom
  • Prosolar SunStar MPPT (c дополнительным шунтом)
  • Outback FlexMax (с дополнительным шунтом и системой контроля FlexNet DC)

Полный список статей на нашем сайте:

Дополнительная информация также содержится в разделе «Основы возобновляемой энергетики», подраздел Фотоэлектричество, а также в разделе «Библиотека«.

Контроллеры для солнечных батарей

Принцип работы контроллеров для заряда солнечных батарей, устройство, что учитывать при выборе

В современных солнечных электростанциях для передачи выработанной электроэнергии рабочим аккумуляторам применяются разные схемы подключения источников тока. Они используют не одинаковые алгоритмы, созданы на основе микропроцессорных технологий, называются контроллерами.

Как работают контроллеры заряда солнечных батарей

Электроэнергия, вырабатываемая солнечной батареей, может передаваться накопительным аккумуляторным батареям:

1. напрямую, без использования коммутационных приборов и регулирующих устройств,

2. через контроллер.

При первом способе электрический ток от источника пойдет к аккумуляторам и станет увеличивать напряжение на их клеммах. Вначале оно дойдет до определенного, предельного значения, зависящего от конструкции (типа) аккумуляторной батареи и окружающей температуры. Затем преодолеет рекомендуемый уровень.

На начальном этапе заряда схема работает нормально. А вот дальше начинаются крайне нежелательные процессы: продолжающееся поступление зарядного тока вызывает повышение напряжения сверх допустимых значений (порядка 14 В), возникает перезаряд с резким возрастанием температуры электролита, приводящей к его закипанию с интенсивным выбросом паров дистиллированной воды из элементов. Иногда вплоть до полного высыхания емкостей. Естественно, что ресурс аккумуляторной батареи резко снижается.

Поэтому задачу ограничения зарядного тока решают контроллерами или вручную. Последний способ: постоянно контролировать по приборам величину напряжения и коммутировать переключатели руками такой неблагодарный, что существует только в теории.

Типовая схема подключения контроллера

Алгоритмы работы контроллеров заряда солнечных батарей

По сложности способа ограничения предельного напряжения приборы изготавливают по принципам:

1. Откл/Вкл (или On/Off), когда схема просто коммутирует аккумуляторы к зарядному устройству по величине напряжения на клеммах,

2. широтно-импульсных (ШИМ) преобразований,

3. сканирования точки максимальной мощности.

Принцип №1: Схема Откл/Вкл

Это наиболее простой, но самый ненадежный метод. Его главный недостаток в том, что при возрастании напряжения на клеммах аккумумляторной батареи до предельного значения полного заряда емкости не происходит. Она доходит в этом случае примерно до 90% номинального значения.

У аккумуляторов постоянно происходит регулярный недобор энергии, который значительно снижает срок их эксплуатации.

Принцип №2: Схема ШИМ контроллеров

Сокращенное обозначение этих устройств на английском языке: PWM. Они выпускаются на основе конструкций микросхем. Их задачей является управление силовым блоком для регулирования напряжения на его входе в заданном диапазоне с помощью сигналов обратной связи.

PWM контроллеры дополнительно могут:

учитывать температуру электролита встроенным либо выносным датчиком (последний способ точнее),

создавать температурные компенсации зарядным напряжениям,

настраиваться под определенный тип аккумуляторов (GEL, AGM, жидко-кислотные) с разными показателями графиков напряжений в одинаковых точках.

Увеличение функций PWM контроллеров повышает их стоимость и надежность работы.

График работы солнечной батареи

Принцип №3: сканирование точки максимальной мощности

Такие устройства обозначают английскими буквами MPPT. Они тоже работают по способу широтно-импульсных преобразователей, но предельно точны потому, что учитывают наибольшую величину мощности, которую способны отдать солнечные батареи. Это значение всегда точно определяется и вносится в документацию.

Например, для гелиобатарей 12 В точка отдачи максимальной мощности составляет порядка 17,5 В. Обыкновенный PWM контроллер прекратит заряд аккумумляторной батареи при достижении напряжения 14 – 14,5 В, а работающий по технологии MPPT — позволит дополнительно использовать ресурс солнечных батарей до 17,5 В.

С увеличением глубины разряда аккумуляторов возрастают потери энергии от источника. МРРТ контроллеры уменьшают их.

Характер отслеживания напряжения, соответствующего отдаче максимальной мощности солнечной батареи в 80 ватт, демонстрируется усредненным графиком.

Таким способом МРРТ контроллеры, используя широтно-импульсные преобразования во всех циклах заряда аккумуляторов, увеличивают отдачу солнечной батареи. В зависимости от разных факторов экономия может составлять 10 – 30%. При этом ток выхода из аккумулятора будет превышать ток входа в него из солнечной батареи.

Основные параметры контроллеров заряда солнечных батарей

При выборе контроллера для солнечной батареи кроме знания принципов его работы следует обратить внимание на условия, для которых он разработан.

Главными показателями приборов являются:

значение входного напряжения,

величина суммарной мощности солнечной энергии,

характер подключаемой нагрузки.

Напряжение солнечной батареи

На контроллер может подаваться напряжение от одной или нескольких солнечных батарей, соединенных по разным схемам. Для правильной работы прибора важно, чтобы суммарная величина подаваемого на него напряжения с учетом холостого хода источника не превышала предельной величины, указанной производителем в технической документации.

При этом следует сделать запас (резерв) ≥ 20% из-за ряда факторов:

не секрет, что отдельные параметры солнечной батареи иногда могут быть чуть-чуть завышены в рекламных целях,

происходящие на Солнце процессы не носят стабильного характера, а при аномально повышенных вспышках активности возможна передача энергии, создающая напряжение холостого хода солнечной батареи выше расчетного предела.

Мощность солнечной батареи

Она важна для выбора контроллера потому, что прибор должен быть способен надежно передавать ее рабочим аккумуляторам. В противном случае он просто сгорит.

Для определения мощности (в ваттах) умножают величину тока выхода из контроллера (в амперах) на напряжение (в вольтах), вырабатываемое солнечной батареей с учетом, созданного для него, 20% запаса.

Характер подключаемой нагрузки

Надо хорошо понимать назначение контроллера. Не стоит использовать его в качестве универсального источника питания, подключая к нему различные бытовые устройства. Конечно, часть из них сможет нормально работать, не создавая аномальных режимов.

Но…насколько долго это будет продолжаться? Прибор работает на основе широтно-импульсных преобразований, использует микропроцессорные и транзисторные технологии, которые учли в качестве нагрузки только характеристики аккумуляторов, а не случайных потребителей со сложными переходными процессами при коммутациях и меняющимся характером потребляемой мощности.

Краткий обзор производителей

Выпуском контроллеров для солнечных электростанций занимаются многие страны. На Российском рынке популярна продукция компаний:

Morningstar Corporation (ведущий производитель США),

Beijing Epsolar Technology (работает с 1990-го года в Пекине),

AnHui SunShine New Energy Co (КНР),

Среди них всегда можно подобрать надежную модель контроллера, наиболее подходящую под конкретные условия эксплуатации солнечных электростанций с определенными техническими характеристиками. Для этого просто используете рекомендации этой статьи.

Как выбрать контроллер заряда солнечной батареи: теория и практика

Контроллер – электронный прибор, отвечающий за контроль и регулировку заряда аккумуляторной батареи. Различные модели отличаются по конструкции и режиму работы.

Подбор по мощности массива солнечных батарей

Основной параметр контроллера солнечного заряда это рабочее напряжение и максимальная сила тока, с которой может работать контроллер заряда. Очень важно знать такие параметры солнечных батарей, как:

Номинальное напряжение – рабочее напряжение контура солнечных батарей, замкнутого на нагрузку, т.е. на контроллер;

Напряжение открытого контура – максимальное достигаемое напряжение контура солнечных батарей, не подключенного к нагрузке. Также же это напряжение называется напряжением холостого хода. При подключении к контроллеру солнечных батарей, контроллер должен выдерживать данное напряжение.

Максимальная сила входного тока от солнечных батарей, сила тока контура солнечных батарей в режиме короткого замыкания. Этот параметр достаточно редко указывается в характеристиках контроллера. Для этого необходимо узнать номинал предохранителя в контроллере и посчитать величину тока короткого замыкания солнечных модулей в контуре. Для солнечных батарей ток короткого замыкания обычно всегда указан. Ток короткого замыкания всегда выше максимального рабочего тока.

Номинальный рабочий ток. Ток подключенного контура солнечных батарей, который вырабатывается солнечными батареями при нормальных условиях эксплуатации. Данный ток обычно ниже указанного тока в характеристиках для контроллера, так как производители, как всегда, указывают максимальную силу тока контроллера.

Номинальная мощность подключаемых солнечных батарей. Данная мощность представляет произведение рабочего напряжения на рабочий ток солнечных батарей. Мощность солнечных батарей, подключенных к контроллеру должна быть равна указанной или меньше, но никак не больше. При превышении мощности, контроллер при отсутствии предохранителей может сгореть. Хотя большинство контроллеров, естественно, имеют предохранители, рассчитанные на перегрузку в 10-20% в течение 5-10 минут.

Покупка контроллера заряда АКБ – на что обратить внимание

Выбирая контроллер, следует обратить внимание на ряд технических параметров, которые позволят получить оптимальную по мощности систему электроснабжения. Прежде всего, следует знать о технологических различиях контроллеров, которые реализованы в основных видах этих устройств, существующих на сегодняшний день.

Обзор контроллеров солнечной батареи: разновидности

По своему устройство различают четыре типа контроллеров (не считая самодельных):

  • OnOff — отключает заряд по достижению верхнего предела напряжения;
  • PWM — для понижения заряжающего тока при максимальных нагрузках;
  • МРРТ — сложная система, снимающая высокое напряжение с батарей с последующей оптимизацией нагрузки;
  • гибридные — созданы для комбинированных систем (солнечные модули + ветряки) для сброса избыточной энергии.

Чем сложнее модель, тем выше ее стоимость. Поэтому устройства типа «OnOff» всегда будут стоить дешевле, чем МРРТ. Необязательно покупать последнюю новинку техники, если вам необходим простой контроллер для солнечной батареи на даче. В этих случаях модели «OnOff» будет достаточно. Если вам необходимо позаботиться о гелиосистеме, работающей на постоянной основе и служащей для обеспечения электроэнергией жилого дома, тогда стоит задуматься о приобретении PWM или МРРТ моделей. Гибридные модели актуальны только для владельцев комбинированных систем. Они строятся на базе МРРТ или PWM с той разницей, что у них используются вольтамперные системы исчисления.

Какие бывают контроллеры заряда

В серийном выпуске имеются два вида контроллеров заряда для солнечных панелей – PWM и MPPT. У обоих типов есть достоинства и недостатки.

Контроллеры PWM

Устройства с широтно-импульсной модуляцией, или PWM контроллеры, уже считаются устаревшими. В их основе лежит простая ШИМ, который удерживает напряжение на выходе посредством изменения скважности генерируемого им сигнала.

Обычно он снимает напряжение с выходного контура DC-DC преобразователя, тем самым поддерживая на выходе некоторое заранее определенное напряжение (чаще всего 12-14 вольт, однако встречаются модели и с другими параметрами). Импульсы поступают на высокочастотные транзисторные ключи, которые управляют питанием дросселя.

Контроллер заряда PWM

В результате на последнем возникают быстрые подъемы и спады напряжения, амплитуда которых зачастую в несколько раз превышает входные параметры. На выходе напряжение стабилизируется диодом и выравнивается конденсатором.

К преимуществам PWM можно отнести:

  • их стоимость;
  • высокую надежность;
  • простоту конструкции.

К сожалению, при их работе часть мощности рассеивается, что снижает КПД.

Контроллеры МРРТ

Принцип работы MPPT практически ничем не отличается от PWM за исключением того, что генерацию импульсов для работы преобразователя выполняет не широтно-импульсный модулятор, а небольшой компьютер, имеющий собственные процессор и память. Он постоянно контролирует напряжение и силу тока как на входе, так и на выходе преобразователя, а также температуру внутренних радиоэлементов.

Благодаря этому достигается максимальная производительность работы солнечных панелей, практически без потерь на рассеивание тепла. Все параметры задаются микропрограммой контроллера.

Аппарат типа МРРТ подходит крупных предприятий и промышленных электростанций, благодаря:

  • высокой производительности;
  • быстрой окупаемости.

Однако его стоимость значительно превышает цену аналогов с ШИМ.

Подбор контроллера по максимальной нагрузке, зарядному току акб и по количеству акб

Одним из важных аспектов выбора контроллера является максимальная выходная мощность контроллера, которая должна учитываться как со стороны контроллера, так и со стороны акб. Рассмотрим почему.

Допустим, имеем комплект акб большой емкости. Соответственно чтобы зарядить данные акб в течение дня, контроллер должен выдавать необходимую мощность, ну и мощность подключенных солнечных батарей должна быть, естественно, не меньшей. Если мощность контроллера и массива солнечных батарей будет меньше, то акб не успеют зарядиться в течение дня, и при постоянной нагрузке разрядятся еще больше, и так каждый раз, что скажется на их последующем ресурсе.

Если подключенные акб к солнечному контроллеру имеют маленькую емкость. Для современных контроллеров эта проблема уже не актуальна, но стоит рассмотреть такой вариант. На старых или простых контроллерах очень важно было подобрать контроллер, мощность которого с равной мощностью солнечных батарей позволят в течение дня зарядить акб, разряженный за ночь, и обеспечить питанием дневные электрические нагрузки. Для аккумуляторных батарей максимальный зарядный ток не должен превышать 30% от номинала емкости, если акб имеет емкость 100АЧ, то зарядный ток не должен превышать 30 Ампер. Если же мощность солнечной системы была бы избыточна, то контроллер продолжал бы заряжать акб даже после полного их заряда, не опуская зарядный ток и напряжение, что приводило к закипанию электролита, его кипению, вскипанию и порче аккумулятора. Современные контроллеры имеют встроенный компьютер, который следит за параметрами акб, имеет программу заряда, управляемые реле отключения, а также может регулировать ток и напряжение заряда.

Какие параметры контроллера необходимо учитывать

Чтобы определить критерии при выборе контроллера, необходимо сформулировать функции, которые он выполняет, к ним можно отнести следующие:

  • Обеспечение заряда аккумуляторной батареи;
  • Отключение аккумуляторной батареи при полном заряде в автоматическом режиме;
  • Отключение нагрузок при минимальном заряде в автоматическом режиме;
  • Подключение нагрузок при восстановлении заряда;
  • Подключение фотоэлементов при заряде аккумуляторной батареи в автоматическом режиме.

Определившись с функциями, за выполнение которых отвечает контроллер, можно сформулировать параметры, которые обязательно учитывают при выборе устройства.

Основных параметров два, это:

  1. Напряжение, которое фиксируют на входе. Максимально допустимое напряжение может на 15 — 20% быть выше, чем на «холостом ходу» солнечной панели.
  2. Показатели номинального тока. Для ШИМ (PWM) контроллера этот количественный показатель должен быть выше на 10% показателя тока при коротком замыкании в работе солнечной панели. MPPT-контроллер выбирают по мощности, которая должна быть выше величины произведения выходного тока регулятора и напряжения всей системы, плюс 20% от полученного значения, для создания запаса мощности в периоды активного солнца.

Современные модели контроллеров оснащены разнообразными защитными механизмами и возможностью работы в разных режимах. Наличие подобных элементов в конструкции того или иного прибора не влияет на основные параметры при его выборе, но дополнительно стимулирует приобретение той или иной модели.

К таким элементам защиты можно отнести:

  • Защита от подключения неправильной полярностью;
  • Защита на входе от случаев короткого замыкания;
  • Защита во время нагрузок от короткого замыкания;
  • Защита от перегревов;
  • Защита на входе от высоких нагрузок напряжения;
  • Защита от ударов молний;
  • Схемы предотвращения ночного разряжения аккумуляторных батарей;
  • Электронные предохранители.

Выбор инвертора

Основная функция инвертора заключается в преобразовании стандартного напряжения и постоянного тока аккумуляторных батарей в бытовой переменный ток напряжением 220В. График напряжения на выходе из инвертора имеет синусоидальную форму. И в зависимости от того, какие потребители будут подключены к питанию от СБ, инвертор должен выдавать напряжение либо с правильной синусоидальной формой графика (чистый синус), либо с модифицированным синусом (меандр). Как именно ведет себя график напряжения на выходе из инвертора, зависит от особенностей устройства.

Некоторые электроприборы стабильно работают и на «модифицированном синусе»: электронагреватели, компьютеры, устройства с импульсными источниками питания (определенные модели телевизоров). Опытные пользователи нашего портала рекомендуют приобретать инверторы, дающие на выходе «чистый синус». Форма выходного сигнала указывается в характеристиках устройства.

Выбирая инвертор, следует обращать внимание не только на форму выходного сигнала, но и на мощность устройства.

  • Номинальная мощность (рабочая) должна быть на 25-30% выше суммарной мощности постоянно задействованных в работу потребителей.
  • Пиковая мощность инвертора должна превышать мощность возможной кратковременной нагрузки на прибор. Речь идет о нагрузке, которая возникнет в случае одновременного включения нескольких потребителей, обладающих большой пусковой мощностью (холодильник, электродвигатель насоса и т. д.).
  • В характеристиках инвертора указывается еще и максимальная мощность. Она меньше пиковой, но больше номинальной. Этот параметр обозначает допускаемую кратковременную нагрузку, при которой устройство проработает в течение нескольких минут (5-10 мин) и не выйдет из строя.

Пусковой ток холодильника может не потянуть инвертор, но у меня, к счастью, мощности инвертора вполне хватает. Мощность постоянная – 2,5 кВт, пиковая – 4,8.

КПД инвертора также имеет большое значение при выборе устройства. Он определяет потери электроэнергии во время работы устройства и может варьироваться в следующих пределах: 85-95% (в зависимости от модели). Рекомендуется выбирать устройство с КПД – от 90% и выше. Ведь за инвертор мы заплатим один раз, а за его низкий КПД платить придется постоянно.

Инверторы, подключаемые напрямую к свинцово-кислотным аккумуляторам, должны защищать АКБ от глубокого разряда. В большинство современных инверторов подобная функция встроена. Порог отсечки нагрузки может быть установлен заводом-изготовителем, а может регулироваться пользователем.

Нижний порог отсечки нагрузок от АКБ – 10В-10,5В (в 12-ти вольтовых системах) стандартен По сути, это аварийная защита от глубокого разряда батареи. Теперь про регулируемые настройки: есть инверторы с регулируемыми настройками, есть – без настроек. Бюджетные модели имеют меньше функционала, дорогие – больше. Потребитель сам определяет, что ему больше нужно и по какой цене.

Помимо обычных преобразователей, в системах автономного питания часто используются гибридные и комбинированные инверторы. Комбинированные – способны совмещать функции контроллера и инвертора. Гибридные – позволяют осуществлять питание потребителей как от сети, так и от аккумуляторов.

О сечениях проводников, которые соединяют различные элементы автономной системы электроснабжения, о параметрах защитных устройств и о способах монтажа используемого оборудования вы узнаете в заключительной часте настоящей статьи.

Какими соображениями руководствуются пользователи FORUMHOUSE, выбирая кислотные или щелочные аккумуляторы для автономных систем, вы можете прочитать в соответствующем разделе. О том, как правильно выбрать подходящий контроллер или автономный инвертор для систем, работающих от солнечных батарей, можно узнать, посетив темы нашего сайта, открытые для обсуждений. А о самых популярных способах, позволяющих решить проблему отсутствия электричества, вы узнаете из статьи, основанной на опыте пользователей нашего портала.

Подбор контроллера по типу АКБ

Различные по типу АКБ необходимо заряжать по различным программам зарядки. Это связано с различным химическим составом аккумуляторов. Программы зарядки имеют разные алгоритмы заряда. В соответствии с выбранной программой зарядки акб контроллер заряда регулирует напряжение и силу тока в установленном диапазоне. Современные контроллеры заряжают контроллеры по технологии широтно-импульсной модуляции, такие контроллеры называются ШИМ(PWM) контроллеры. Причем более дорогие контроллеры, которые называются MPPT, использующие технологию поиска точки максимальной мощности от массива солнечных батарей тоже заряжают аккумуляторы по технологии ШИМ. Сначала MPPT контроллер отбирает максимальную мощность, а далее используя ШИМ преобразователь, заряжает акб в соответствии с установленной программой зарядки.

В зависимости от имеющихся аккумуляторов, необходимо выбрать контроллер, имеющий программу заряда именно для вашего типа акб. Рассмотрим основные типы АКБ и условия их заряда:

1) Свинцово-кислотные с жидким электролитом. Заряжаются обычно напряжением не выше 14-15 вольт, можно и выше до 17 вольт, но электролит быстро закипит и начнется процесс его выкипания и разрушения пластин, поэтому придется безотрывно следить за процессом заряда и при начале образования пузырьков, все равно опустить напряжение до 14 вольт, или отключить заряд и дать остыть аккумулятору. Также такие аккумуляторы при заряде выделяют взрывоопасный газ, поэтому их необходимо заряжать с открытыми клапанами и в хорошо вентилируемом помещении.

2) Свинцово-кислотные герметичные с загущенным или абсорбированным электролитом. Это аккумуляторы, изготовленные по технологии GEL и AGM. Данные аккумуляторы необходимо заряжать напряжением не выше 14 вольт. Это связано с тем, что если начнется процесс нагрева, загущенного или абсорбированного электролита, то структура электролита начнет разрушаться, и потеряет свои свойства, причем в отличии от жидко-кислотных, электролит невозможно поменять или восстановить.

3) Щелочные АКБ. Требуют заряд напряжением от 10В до 17В, необходимо следить за процессом заряда.

5) Литиевые, имеют в составе специальный блок управления зарядом.

Простые контроллеры заряда имеют одну или две программы зарядки для свинцово-кислотных акб для негерметичных жидкостных и для герметичных GEL или AGM аккумуляторов.

Где купить

Купить контроллер заряда можно на алиэкспрессе. Там предлагается большой выбор устройств, как PWM, так и MPPT. Также ознакомьтесь с обзорами на ту или иную продукцию от реальных покупателей.

Цена популярных контроллеров заряда на алиэкспрессе начинается от 1000 рублей.

Более дешевые варианты вы можете поискать на радиорынках. Обратите внимание: когда вы покупаете товар с рук, убедитесь, что в комплекте идет инструкция или на приборе наглядно обозначено, как его подключать.

Выбирать его нужно аккуратно, в противном случае существует риск приобрести некачественный прибор.

Покупать подержанные устройства не рекомендуется, особенно МРРТ. Связанно это с тем, что интегральные схемы от постоянной работы постепенно деградируют. В них могут возникать как механические повреждения от перепадов температуры, так и внутрислойные короткие замыкания, из-за чего внешне рабочее устройство будет работать нестабильно.

Подбор по стоимости

Важным критерием выбора контроллера является стоимость контроллера. При возникновении вопроса, какой контроллер купить, дороже или дешевле, в случаях небольших солнечных электростанций возникает решение, купить контроллер проще и дешевле, а на разницу в цене купить еще одну две солнечные батареи.

Если вы хотите установить простую автономную электростанцию на солнечных батареях, то стоит выбрать недорогой, но качественный ШИМ контроллер, с запасом по мощности в 20-30%.

Если же вы очень критично относитесь к установке электростанции, вам важно все параметры станции, высокая эффективность, контроль параметров, возможности удаленного управления, а также переключение между электростанцией и электросетью, или автоматическое включение генератора, то стоит приобрести продвинутый, современный, MPPT контроллер, с множеством функций, встроенных защит, возможностью управления внешними устройствами и перераспределением нагрузок.

Контроллеры заряда MPPT и PWM

Контроллер заряда для солнечной батареи, рассчитанный на 12, 24 или 48 вольт – важнейший элемент любой СЭС, в которой используется АКБ. Его главными задачами является обеспечение бесперебойной подачи тока в сеть с одновременным управлением уровня заряда аккумуляторной батареи. На современном рынке можно купить различные виды контроллеров, которые отличаются функциональностью, надежностью и ценой. Конструктивно прибор может выполняться в виде отдельного элемента системы либо встраиваться в блок питания или инвертор.

Разновидности контроллеров для солнечных батарей

Обеспечить максимальную эффективность СЭС, вынужденную использовать в роли источника энергии то сами панели, то АКБ – технологически сложная и недешевая задача. По этой причине выбор контроллера для системы совершается исходя из наиболее важных факторов. Таковыми являются потенциальная производительность СЭС, важность обеспечения максимальной эффективности и ожидаемая прибыль. В итоге приходится идти на компромисс, выбирая один из пяти возможных вариантов.

Мы предлагаем наиболее популярные и эффективные контроллеры для солнечных электростанций разных мощностей:

  1. PWM (ШИМ). Широтно-импульсный контроллер солнечной панели типа PWM (Pulse-Width Modulation) способен надежно модулировать величину тока. Результатом становится возможность подзаряжать АКБ полностью, хотя и за довольно длительное время. Цена на данные модели для небольших частных электростанций вполне приемлемая.
  2. МРРТ. Купить контроллер заряда для солнечных батарей типа MPPT (Maximum Power Point Tracking) рекомендуется владельцам станций достаточно большой мощности. В этом случае немалая стоимость такого регулятора быстро окупится, поскольку он на 30-35% эффективнее любого конкурента. Это достигается за счет работы сложного компьютерного алгоритма, в режиме реального времени, постоянно рассчитывающего и выдающего ток оптимальной силы и напряжения.

Принцип работы солнечного контроллера и стадии заряда аккумулятора:

  • Накопление (Bulk) – зарядка максимальным током до достижения заданного значения напряжения стадии – поглощение, при этом АКБ заражается на 80%;
  • Поглощение или абсорбция (Absorbtion) – это поглощающий заряд, при котором контроллер заряда поддерживает напряжение, уменьшая зарядный ток до полного заряда АКБ;
  • Поддерживающий заряд или равновесие (Float) – уменьшение напряжение ниже значения стадии абсорбция, для предотвращения перегрева или газообразования;
  • Уравновешивающий заряд или выравнивание (Equalize) – применяется только для АКБ с жидким электролитом, в процессе которого подается более высокое напряжение, на пластинах образовываются пузырьки воздуха, подымаясь в верх перемешивают электролит. Данный процесс сопровождается образованием водорода и кислорода, что повышает его взрывоопасность. Для безопасной работы данного устройства достаточно обеспечить вентиляцию и устранить все источники возгорания. Этот режим нельзя применять для герметизированных аккумуляторов.

Дополнительные функции контроллеров

В зависимости от функционала подобранной модели, контроллеры заряда аккумулятора от солнечной батареи способны выполнять следующие полезные операции:

  • выдавать подробную информацию о наиболее важных текущих параметрах системы – уровне заряда АКБ, величине силы тока, напряжения, выдаваемой мощности и пр.;
  • хранить и предоставлять статистические данные за различные периоды – например, объем выданной в сеть электроэнергии в разрезе по дням, неделям, месяцам и т.д.;
  • регулировать нагрузку по заданному таймером режиму либо автоматически в зависимости от внешних факторов (закат солнца, включение уличных фонарей);
  • отправлять информацию на внешний источник, например ноутбук, по Wi-Fi;
  • автоматически переключать нагрузку на нужный источник и отключать батареи при завершении зарядки.

Как выбрать оптимальный контроллер заряда для солнечной панели?

Интернет-магазин компании «Мой Ватт» предлагает огромный ассортимент контроллеров для станций любого типа и мощности. Каждая модель снабжается подробным описанием характеристик и доступных функций.

Если Вам не удалось самостоятельно подобрать и купить нужный вариант контроллера заряда для солнечной батареи, обратитесь за помощью к нашим профессиональным консультантам. Для связи используйте стандартную форму заявки на сайте, либо звоните на телефоны «горячей линии».

Солнечная батарея на балконе: тестирование контроллера заряда

В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.

Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)

Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).

Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.

Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.

Все вместе выглядело так:

Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:

Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.

Тестирование

С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.

А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.

Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:

Бонус этого балансира еще и в том, что он в 2 раза дешевле.

Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:

Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.

Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.

Заключение

Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.

Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.

Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.

Более-менее окончательная версия батареи выглядит вот так:

Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.

Для желающих посмотреть видео-версию, ролик выложен в youtube.

Как выбрать контроллер заряда солнечной батареи

Альтернативная энергетика с каждым годом распространяется все шире. Соответственно растет спрос на солнечные батареи и контроллеры заряда для аккумуляторов. И это не удивительно, ведь одним из классических примеров свободной энергии является энергия солнца. Ее используют тремя основными способами:

  1. Гелиоколлектор.
  2. Солнечный концентратор.
  3. Солнечная батарея.

Если первые два метода заключаются в концентрировании и передачи тепла, то третий позволяет преобразовать солнечный свет в электроэнергию. Однако в альтернативной энергетике есть одна существенная проблема, чтобы в ней разобраться, нужно провести аналогию с классическими методами «добычи» электроэнергии.

Дело в том, что в привычных ТЭЦ и АЭС генератор приводит в движение паровая турбина, на ГЭС – течение воды. Это процесс беспрерывный. В случае альтернативной энергетики все немного иначе. Ни ветер, ни солнце не светит постоянно. Бывает штиль, облачность, ночь, в конце концов. А электроэнергия, в большей степени, требуется именно в темное время суток. Как же быть? Необходимо запасти ее в аккумуляторы.

Для чего нужен контроллер заряда для солнечной батареи?

Аккумуляторы были изобретены для того, чтобы в них запасать энергию. Поэтому они нашли широчайшее применение в альтернативной энергетике, в установках малых и крупных масштабов. Но есть ряд проблем:

  1. Солнечный свет в течение светлого времени суток имеет разную интенсивность.
  2. В зависимости от схемы соединений вашей СЭС на выходных клеммах панелей может быть разная величина напряжений.

Контроллер заряда солнечной батареи как раз и нужен для того, чтобы преобразовать энергию, которую отдают устройства в правильный для аккумулятора «вид». С его помощью потоки энергии распределяются таким образом, чтобы обеспечить зарядку приборов в правильном режиме.

Устройство не только помогает зарядить аккумулятор, но и благодаря тому, что этот процесс становится достаточно оптимизированным – срок ее жизни значительно продлевается.

Виды контроллеров для солнечной батареи

В современном мире выделяют три типа контроллеров:

On-Off – это простейшее решение для заряда, такой контроллер напрямую подключает солнечные батареи к аккумулятору, когда его напряжение достигнет 14,5 вольта. Однако такое напряжение не свидетельствует о полном заряде аккумулятора. Для этого нужно какое-то время поддерживать ток, чтобы АКБ набрала необходимую для полного заряда энергию. В результате вы получаете хронический недозаряд аккумуляторов и сокращение их срока службы.

ШИМ-контроллеры поддерживают нужное напряжение для зарядки аккумулятора просто «срезая» лишнее. Таким образом, зарядка прибора происходит вне зависимости от напряжения, выдаваемого солнечной батареей. Главное условие, чтобы оно было выше, чем необходимое для заряда. Для аккумуляторов на 12 В, напряжение в полностью заряженном состоянии находится на уровне 14.5 В, а в разряженном около 11. Этот тип контроллеров является более простым, чем MPPT, однако, обладает меньшим КПД. Они позволяют наполнить АКБ на 100% от емкости, что дает значительное преимущество перед системами типа «On-Off».

MPPT-контроллер – имеет более сложное устройство, способное анализировать режим работы солнечной батареи. Его название в полном виде звучит, как «Maximum power point tracking», что на русском языке значит – «Отслеживание точки максимальной мощности». Мощность, которую выдает панель, очень зависит от количества света, который на нее падает.

Дело в том, что ШИМ-контроллер никак не анализирует состояние панелей, а лишь формирует необходимые напряжения для зарядки АКБ. MPPT отслеживает его, а также токи, выдаваемые солнечной панелью, и формирует выходные параметры оптимальные для заряда накопительных элементов питания. Таким образом, снижается ток во входной цепи: от солнечной панели до контроллера, и рациональнее используется энергия.

Виды контроллеров солнечных панелей к содержанию ↑

Что такое Точка Максимальной Мощности?

ВАХ элементов солнечной панели не линейна. Она способна выдавать номинальные токи до определенного выходного напряжения. При достижении нужных параметров ток, отдаваемый батареей, снижается. Точкой Максимальной Мощности называется состояние, когда панель дает максимальные напряжение и ток, после этой точки при повышении выходного напряжения падает и ток. MPPT-контроллер стремится использовать именно тот режим солнечной батареи, при котором созданы условия для достижения ТММ. Исходя из этого, следует, что мощность, отдаваемая такими приборами, будет выше.

Однако существует один нюанс, о котором внимательные читатели уже могли догадаться. Если ШИМ-контроллер независимо ни от чего выдает свои Вольты и Амперы, аккумуляторы будут заряжаться даже при минимальном освещении панели, когда ее выходные параметры малы. Тогда как MTTP контроллер может просто не отреагировать на это. Также существуют отдельные модели с возможностью настройки и адаптации под разные условия окружающей среды.

Внимание! Использование этого типа контроллеров может дать прирост эффективности установки (КПД) до 30%.

Можно ли обойтись без контроллера?

Грамотно выбранный контроллер снижает дальнейшие вложения на обслуживания вашей системы альтернативного электроснабжения. Неправильные процессы заряда аккумулятора ведут к снижению его ресурса. Что будет если не использовать контроллеров вообще? В случае, когда солнечная батарея подключается напрямую к АКБ, ток заряда не будет контролированным. Дело в том, что напряжение в точке максимальной мощности для 12-ти вольтных моделей солнечных панелей достигает значений выше 15,5 вольт. Большой ток заряда вызовет закипание ячеек в аккумуляторах, что повлечет за собой выделение тепла и повреждение целостности батарей.

Правильный режим заряда сохранит ресурс устройства, и вам не нужно будет проводить неплановую замену.

На что смотреть при выборе?

При покупке контроллера заряда нужно учитывать:

  • Мощность установки.
  • Количество батарей.
  • Напряжение системы (12, 24 вольта, или иные, в зависимости от конструкции и соединения панелей).
  • Ток заряда.

Некоторые батареи продаются с возможностью использования в цепях 12 и 24 вольта, например, BlueSolar MPPT.

Ток заряда – характеризует скорость зарядки ваших АКБ. Обычно его выбирают по формуле «Емкость/10», т.е. для аккумулятора емкостью в 50 А/ч достаточно тока в 5 А. Однако, если у вас стоит целая батарея аккумуляторов, общей емкостью в 200 А/ч, тогда понадобится контроллер способный выдать ток до 20 А, это минимум.

Вывод

Контроллер заряда не только сэкономит деньги, но и обеспечит нормальный режим работы всей системы. А это позволит вам пользоваться электричеством без перебоев и подключения городской электросети, то есть автономно. Опыт различных энтузиастов показывает, что MPPT контроллеры лучше работают в условиях хорошей освещенности панелей и яркого солнца, а ШИМ-контроллеры – при пасмурной погоде и слабом солнце. При этом результаты неоднозначны и идут споры о пригодности тех или иных контроллеров для работы в различных ситуациях.

Схема и принцип работы контроллера заряда солнечной батареи — рассматриваем во всех подробностях

Опубликовано Артём в 09.02.2019 09.02.2019

Основной сложностью использования солнечной энергии в быту является ее накопление. Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Необходимость

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Функции контроллеров

Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:

  • перезаряд
  • недозаряд

Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.

Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.

На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.

Как работает контроллер зарядки аккумулятора?

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

  • ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.
    В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками.
  • ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
  • MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.

Как выбрать контроллер для солнечной батареи?

Это очень важное устройство, которое достаточно сложно правильно подобрать среди великого многообразия. Чтобы взять то что действительно нужно придерживайтесь следующих данных:

  • Мощность батареи. На выходе общая мощность не должна быть больше показателя тока.
  • Уровень входящего напряжения. Он должен быть больше на 20% чем U АКБ, которое производится преобразователями света в ток.

Контроллер заряда солнечной батареи на данный момент выпускается всех мастей. Он может обладать защитой от плохих погодных условий, больших нагрузок, замыканий, перегреваний и даже от неправильного включения. Например, такое может случится, когда путаете полярность. В результате брать нужно такое устройство, которое будет иметь несколько уровней защиты.

Популярные компании производители

  1. Автоматика-с.
  2. Эмикон.
  3. Овен.
  4. SLC 500
  5. Allen-Bradleo.
  6. Micro Logix

Данные изготовители занимаются производством подобных приспособлений уже много лет.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

Контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ — такая перспектива уже не кажется раумной. Собрать качественный MPPT — контроллер в домашних условиях — вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

Ветряк для частного дома — игрушка или реальная альтернатива Как выбрать солнечную панель — обзор важных параметров Виды садовых светильников и фонарей на солнечных батареях, как и где использовать. Выгодно ли покупать комплектом солнечные батареи для дачи

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

Кол-во блоков: 14 | Общее кол-во символов: 13535
Количество использованных доноров: 5
Информация по каждому донору:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: